
978-1-4673-6547-5/15/$31.00 ©2015 IEEE

Virtual Security Appliances: The Next Generation Security

Yacine Rebahi, Simon Hohberg, Lijuan Shi

Fraunhofer Fokus

Kaiserin Augusta Allee 31

10589 Berlin, Germany

{yacine.rebahi, simon.hohberg,

lijuan.shi}@fokus.fraunhofer.de

Paolo Comi

Italtel, S.p. A, Innovation & Research

paolomaria.comi@italtel.com

Bruno Miguel Parreira, Anastasios Kourtis

 Portugal Telecom
Demokritos

{bruno-m-parreira@telecom.pt}

{kourtis@iit-demokritos.gr}

Aurora Ramos

Atos S.A.

Spain

aurora.ramos@atos.net

Abstract— We report in this paper on research in progress

related to network functions virtualization (NFV) and their

use in network security. Our objective is to design and

develop a virtual Security Appliance (vSA) capable of

detecting various network attacks while offering an

acceptable level of performance. In this document, we

introduce the vSA under construction and show some

testing results we have recently obtained.

Keywords—network function, virtualization, security, security

appliance, firewall, IDS, T-NOVA

I. INTRODUCTION

A Security Appliance (SA) is simply a “device” designed to

protect computer networks from unwanted traffic. This device

can be active and block unwanted traffic. This is the case for

instance of firewalls and content filters. A security Appliance

can also be passive. Here, its role is simply detection and

reporting. Intrusion Detection Systems are a good example. If

the SA is in charge of scanning the network and identifying

potential breaches (e.g, penetration testing), the SA can be

qualified as preventive. Nowadays, Security Appliances

combine various security features including firewalling,

content filtering, and intrusion detection. For this reason, they

are more commonly known as Unified Threat Management

(UTM) systems.

Conventional security appliances (in particular firewalls) were

deployed at the network border in order to examine the traffic

destined to this network. As networks become more complex,

it is often necessary to place these appliances between multiple

network segments. With NFV and cloud computing, the

situation becomes more challenging as entire networks or

network segments can be hosted completely within a virtual

environment. As a result, security appliances need also to

protect virtual environments in addition to physical networks.

The burden of this task can be carried by security appliances

running on virtual machines. A virtual security appliance

(vSA) is a network security service running entirely within a

virtualized environment.

As a virtual security appliance might span different security

technologies, the type of security being used in this context is

more important when it comes to performance. In the past,

the performance of the appliance was achieved through

dedicated hardware. In virtualized environments, this is not

possible for the reason that different applications might run

on the same operating system and compete for the same

hardware computing resources.

In this paper, we discuss the initial steps towards virtualizing

security appliances. Indeed, different issues related to the

deployment of such appliances need to be addressed,

 Security appliance complexity: identifying whether the

appliance is formed by one or more components

 Internal communication: in case the SA includes

different components, how to ensure proper

communication between virtual machines running the

different components

 Integration with the virtual infrastructure: when setting

up the SA components, we also need to ensure that

virtual platforms such as OpenStack facilitates the

necessary integration including IP addresses provision,

traffic mirroring if needed, and so on

 Impact on the performance: here a selection of security

technologies that could be virtualized might be

necessary. For instance, firewalls could be a “good”

candidate as they inspect small amounts of data (packet

headers) and are in general stateless. In addition to that,

they could run as a part of the operating system which

will not affect the performance of the system

In order to have a realistic scenario and deal with a broader

range of attacks, we propose a virtual security appliance

composed of,

 A virtual firewall used as an entry point to the network

and which will be in charge of “simple” packet filtering.

 An intrusion detection system that handles deeper packet

inspection and issues alerts in case of malicious traffic.

This paper is organized as follows. Section II overviews the

context in which this vSA is being specified and developed,

and section III provides a high-level description of the vSA

architecture. In section IV, we discuss the components that

have been implemented so far as well as their related

performance. Sections V and VI respectively describe the

state of the art as well as future possibilities. Finally, section

VII concludes the paper.

II. USE CASES AND CONTEXT

A. Use cases

Security appliances need to be placed in the network traffic

path. This applies to both passive and active network elements.

Ideally all traffic should pass through the security elements

and because of that, these elements are usually placed near the

Costumer Edge Router (CE). This applies to both residential

and enterprise scenarios, although in the former the

requirements are much lighter and therefore security

appliances are usually integrated in the CE. In the enterprise

scenario, they are composed by specific and dedicated

hardware and are placed within the customer domain (see

Figure 1).

Figure 1. Legacy Security Appliances placement

The process of virtualizing security appliances by itself does

not constitute a service requirement. Therefore, it must be as

transparent to the network as possible while maintaining the

legacy placement and functionality.

With the NFV paradigm, some changes in the infrastructure

are expected, such as the appearance of the NFVI-PoPs. These

are small and distributed datacenters which can be used to

deploy VNFs. The actual number and placement of NFVI-

PoPs is still under heavy discussion, but typically they should

be located close to the Provider Edge Routers (PE). With this

in mind, the placement of the Security Appliances virtual

counterparts (vSA) might lead to two distinct cases,

 Non-virtualized CE – in this case, the vSA will be

placed between the CE and the PE. This situation

forces a change in the traditional network topology.

Nevertheless, this alteration should be almost

transparent and the vSA functionality should be

maintained (see Figure 2)

 Virtualized CE – in this case, the logical placement of

the vSA and the CE is identical to the traditional

scenario and both functions are moved to the NFVI-

PoP. Moreover, the previous physical CE needs to be

replaced by a L2 Bridge to extend the customer

network broadcast domain to the virtual environment

located at the NFVI-PoP (see Figure 3)

Figure 2. vSA deployed at the NFVI-PoP

Figure 3. vSA and vCE deployed at the NFVI-PoP

In this paper, only the security appliance will be virtualized,

because the use of virtual CE presents other challenges that

are outside the scope of this work. Also, from the vSA

perspective, the use or not of a virtual CE should be

transparent.

Finally, only the enterprise use case will be contemplated

since a vSA in a residential scenario would be exaggerated.

In this use case, a company wants to take advantage of

virtualization to deploy network security functions without

compromising its performance and functionality. Moreover,

by moving to a cloud environment, the company wishes to

maintain the legacy network infrastructure as close to reality

as possible. This network infrastructure might include Telco

VPN resources which must not be affected by the new

services.

B. ETSI NFV ISG

In the area of Network Functions Virtualization ETSI NFV

ISG represents one of the most relevant standardisation

initiatives. Security appliances are identified by ETSI NFV in

[24] as one of the main network functions typically deployed

today within enterprise networks as dedicated hardware

infrastructure which, in the near future, may become

appropriate for a Service Provider to deliver on a VNFaaS

basis to the enterprise. NFV management and orchestration

specification by ETSI NFV [25] currently provides some

examples for VNFD (Virtual Network Function Descriptor)

for a virtual firewall to be deployed within a NFV

Infrastructure to which the work in this paper is aligned to,

however no further work on experimentation or proof of

concepts has been done so far by ETSI with vSA [26], so it is

expected this work will contribute in that direction to the

current NFV state of the art.

C. The T-NOVA project

This work has been undertaken in the context of the

European

project T-NOVA that is an Integrated Project co-funded by

the European Commission / 7th Framework Programme,

Grant Agreement no. 619520. T-NOVA aims at designing

and implementing integrated management NFV architecture,

including an Orchestrator platform, for the automated

provision, management, monitoring and optimization of

Virtualised Network Functions over Network/IT

infrastructures. Furthermore, T-NOVA introduces novel

Marketplace exploring new business cases arising in the NFV

scheme, expanding market opportunities by attracting new

entrants and lowering barriers the of the networking market

for software developers. SMEs and academia can leverage

the T-NOVA architecture by developing innovative cutting-

edge Network Functions as software modules, which can be

included in the T-NOVA Function Store, and rapidly

introduced into the market to monetize them under several

billing models options and supporting SLA management. T-

NOVA also provides a common intersection point between

developers and telecom operators, avoiding the delay and risk

of hardware integration and prototyping, leading to more

performant networks and reducing time-to market for new

VNFs. The vSA virtual security appliance described in this

paper is one of the VNFs that will be developed in T-NOVA

for proving its value and effectiveness. For more details, we

refer to [23].

III. ARCHITECTURE

A. Requirements

The virtual Security Appliance (vSA) we are willing to

develop aims at fulfilling the following requirements,

 The vSA shall protect the service from malicious traffic

 The vSA shall provide simple traffic filtering as well as

deep inspection

 The vSA shall run on virtual machines

 The vSA shall provide appropriate APIs for

configuration

 The vSA shall provide an acceptable level of

performance

 The vSA shall be flexible enough to enable detection

rules revision

B. High-level architecture

The architecture of this appliance is depicted in Figure 4 and

includes the following main components,

Figure 4. vSA high-level architecture

The firewall: this component is in charge of filtering the

traffic towards the service. As discussed later on, this

component would run open source firewall software extended

to fulfill the requirements of the use case discussed in section

II. It is worth mentioning that packet filtering firewalls

are often unable to discover packets with malicious payload

on their own as they just look at the source address,

destination address, protocol, and port number.

The Intrusion Detection System (IDS): In order to improve

attack detection, a combination of a packet filtering firewall

and an intrusion detection system using both signatures and

anomaly detection is considered. In fact, Anomaly detection

IDS have the advantage over signature based IDS in detecting

novel attacks for which signatures do not exist.

Unfortunately, anomaly detection IDS suffer from high false-

positive detection rate. It is expected that combining both arts

of detection will improve detection and reduce the number of

false alarms. In T-NOVA, an appropriate existing signature

based IDS (e.g, Snort [1], Bro [2], Suricata [3]) will be

extended to support anomaly detection as well. The mode of

operation of the IDS component is depicted in Figure 5.

Figure 5. IDS process flow diagram

The different components of the architecture interwork in the

following way,

 The data packets are first of all filtered by the firewall

 The data packets are also duplicated (mirrored) through

Open vSwitch and sent to the IDS for further inspection.

The IDS will monitor and analyze all the services

passing through the network

 As a first step, the data packets go through a signature

based procedure. This will help in detecting efficiently

well know attacks such as port scan attacks and TCP

SYN flood attacks

 If an attack is detected at this stage, an alarm is generated

and the firewall is informed to revise its rules

 If no attack is detected, the data packets will be passed to

an anomaly detection algorithm. In our context, it will be

NN-SOM due to its interesting characteristics

 In the same way, if an attack is detected, an alarm is

generated and the firewall will be contacted to revise its

rules

 If no attack is detected, no further action is required

Open vSwitch: As the firewall and the IDS run on different

virtual machines and need to interact with each other, a third

component is needed to facilitate this interaction and forward

the traffic between the firewall and the IDS virtual machines.

For this purpose, Open vSwitch (RFC 7047) is going to be

used. It is open source software (client and server) designed to

be used as a virtual switch. It can also be extended and

controlled using OpenFlow and the OVSDB (Open vSwitch

Database) management protocol. For the deployment of Open

vSwitch in our architecture, there are two possibilities. First,

Open vSwitch is a part of the security appliance, but in this

case the deployment on the virtual infrastructure (e.g,

OpenStack) will also require a switching functionality (on the

virtual infrastructure) to communicate with the outside

network. The second option is simply the deployment of Open

vSwitch directly on the virtual infrastructure. This solution

also prevents switching functionalities duplication.

The Controller: On the one hand, in the vSA the firewall

actively blocks unwanted traffic which is an effective measure

to protect against a variety of known attacks. On the other

hand the IDS detects suspicious traffic passing the firewall and

generates alerts. The vSA Controller now combines both

functionalities to allow the vSA to actively react to attacks by

analyzing the alerts generated from the IDS and adapting the

firewalls configuration in order to stop the attack.

IV. IMPLEMENTATION AND PERFORMANCE

A. Technology selection

In the context of this paper, we focus more on the use of

firewalls as the implementation of the entire appliance is still

ongoing. To be more specific, a Firewall (FW) is a

program/device that simply filters the network traffic. It

controls the traffic (in and out) using one of the following

methods,

• Packet filtering

• Proxy service

• Stateful inspection

As performance is one of the main issues when deploying

software versions of security appliances, we will first provide

a short evaluation (partly based on [4] and [5]) of firewalls

software that can run in virtual environments. The idea is not

to go through all the relevant existing software but just the

most popular ones that could be extended to fulfill the use case

requirements.

Firewall Evaluation

Vyatta

VyOS [6]
VyOS is a community fork of Vyatta, a Linux

based network operating system that provides

software-based network routing, firewall, and VPN
functionality

 Supports paravirtual drivers and integration

packages for virtual platforms.

 Completely free and open source

pros: open source, large user base, REST APIs,

high performance, root shell, support for IDS

pfSense

[7]

The pfSense project is a free network firewall

distribution, based on the FreeBSD operating

system with a custom kernel and including third

party free software packages for additional

functionality

OS: FreeBSD

pros: Open source, Web User Interface, very easy

to use, large community, root shell, integration of

external packages

cons: incomplete bgp/ospf, xml config, no config

cli, no REST APIs

Halon [8] Halon Virtual Security Router (VSR) is an

OpenBSD-based firewall, router, VPN and load

balancing appliance focusing on security, flexibility

and manageability.

OS: OpenBSD

pros: Open source, Web User Interface, SOAP

APIs, juniper-style config/rollback/commit,

inexpensive, root shell, pkg_add

cons: small community, unknown vendor, no IPS

functionalities

m0n0wall

[9]

m0n0wall is a project aimed at creating a complete,

embedded firewall software package that, when

used together with an embedded PC, provides all

the important features of commercial firewalls.

m0n0wall is based on FreeBSD, along with a web

server, PHP and a few other utilities. The entire

system configuration is stored in one single XML

text file to keep things transparent.

Provides packet filtering, VPN, NAT, IPS

OS: FreeBSD

pros: open source, very small image, root shell,

pkg_add

cons: less feature complete than pfSense

Vuurmuur

[10]

Vuurmuur is a powerful firewall manager built on

top of iptables that works with Linux kernels 2.4

and 2.6. It has a simple and easy to learn

configuration that allows both simple and complex

configurations.

OS: GNU GPL

pros: open source, no iptables knowledge required,

human readable rules syntax, Ncurses GUI, no X

required, potential integration with IDS/IPS, traffic

volume accounting

cons: no REST APIs for configuration, less feature

complete than pfSense

From the above table, the open source firewalls that are richer

and more complete are Vyatta VyOS and pfSense. In addition

to that, VyOS seems to support REST APIs for configuration

which are important in the integration with the rest of the T-

NOVA framework.

These two options will be evaluated from the performance

point of view and the best one will be utilized as a component

within the vSA.

B. Performance

Firewalls are often implemented in routers to control packet

flows. If the packet filtering process generates an extra

overhead, this will, certainly, affect the performance of the

system and lead to degradation in its time response.

To study the performance of firewalls, benchmarking

techniques are needed. Unfortunately, activities in this area are

very scarce. As an example, the IETF Benchmarking

Methodology Working Group [11] produced several Request

for Comments (RFCs) describing benchmarking terminology

and methodology for a wide range of networking devices.

Performance benchmarks related to firewalls are discussed in

RFC 2647 and RFC 3511. The suggested methodologies are

intended to be standard benchmarking for all classes of

firewalls. Unfortunately, this makes them too general to be

applied to a particular class of firewall. So far, it seems to us

that the methodology suggested by Kean and Mohd [12] for

evaluating firewalls performance is well suited. This

methodology suggests the following metrics,

Throughput: The maximum rate at network layer which none

of the received packet is dropped by the firewall without

activating filtering rules. In RFC 2647, the throughput is

defined as the actual payload that is received per unit of time

Latency: The time interval starting when the last bit of input

frame reaches the input interface of the firewall, and ending

when the first bit of the output frame is observed at the output

interface of the firewall

Jitter: Measures the variation in delay of the received packet

Goodput: The rate at which packets are forwarded to the

correct destination interfaces of the firewall, excluding any

packets dropped due to the rule set definition. The goodput

could be seen as the opposite of the Packet Loss Rate (PLR)

which is the ratio of the lost packets to the total of transmitted

packets

C. Testbed setup

For simplicity reasons, we have used Iperf [13] for generating

IP traffic in our tests. In fact, other IP traffic generators such

as D-ITG [14], ostinato [15], and IPTraf [16] could have also

been utilized. Iperf mainly generates TCP and UDP traffic at

different rates. Diverse loads (light, medium, heavy) and

different packet sizes are also considered. For analyzing IP

traffic, we used “tcpdump” for capturing it and “tcptrace” to

analyse it and generate statistics. As for the virtualization,

VirtualBox [17] was used.

To run our tests, we decided to use two hosts. On the first

one, we have installed the Iperf client and server and on the

second one, we have setup the firewall under tests. This setup

is in fact in line with the recommendations provided in RFC

2647. The characteristics of the used hosts are as follows,

1
st
 Host System (Client/server)

Guest System (Client/server)

2

nd
Host System (Firewall)

Guest System (Firewall)

D. Testing scenarios

The undertaken tests are based on three main scenarios,

• Scenario one (No firewall): Here, we configure and

check the connectivity between the Iperf client and

server without a firewall in between. This enables us to

test the capacity of the communication channel

• Scenario two (TCP traffic with firewall and no rules):

Here, we check whether the introduction of a firewall

(running on a virtual machine in between) generates

extra delay. We also test the capacity of the firewall in

this context

• Scenario three (with firewall and increasing number of

rules): the objective of this scenario is to study the effect

of introducing rules into the firewall. To achieve this

scenario, some scripts for both pfsense and Vyos are

implemented to generate rules in an automatic way. The

scripts are shell scripts using specific API commands and

generate blocking rules for random source IP addresses

(excluding those used in the test setup) and the WAN

interface. For pfsense, the easyrule function is extended

and for VyOS, the “configure” environment (set of

commands) is used. In this scenario, some tests are also

performed using UDP instead of TCP

E. Tests results

When no firewall is used between the Iperf client and server,

one can note that the throughput of the communication

remains good (700 Mbit/s) as long as the number of parallel

connections does not exceed 7 connections. When the number

of connections goes beyond this value, the throughput

decreases very fast to reach 0 when 20 connections are opened

(Figure 6). One can also notice that the Round Trip Time

(RTT) is severely affected when increasing the number of

connections between the Iperf client and server (Figure 7).

Figure 6. Throughput without firewall

Figure 7. RTT without firewall

The results obtained from a firewall (pfsense or Vyos) being

settled between the Iperf client and server, the variation of the

throughput and the RTT are depicted in Figure 8 and Figure 9

respectively. One can note that pfsense, in both cases, presents

a more stable behavior when the number of connections

increases.

As a third step, we also wanted to check the impact on the

setup when we increase the number of rules in the firewall.

Indeed we started with 10 rules, then 100 rules and ended up

with 1000 rules. The performance results are depicted in

figures 10 to 13. The case with 100 rules was omitted

because the behavior of the firewalls in this case is similar to

the one with 10 rules. One can clearly see that in all these

cases pfsense behaves better than Vyos.

Figure 8. Firewall comparison without rules (Throughput)

Figure 9. Firewall comparison without rules (RTT)

Figure 10. Firewall comparison with 10 rules (Throughput)

One of our objectives was also to investigate the impact of

UDP on the behavior of the firewalls. To achieve this, Iperf

was used here as well to generate UDP traffic. One can see

that VyOS behaves slightly better than pfSense when it

comes to packet jitter (Figure 14). Contrary to this fact, no

difference could be distinguished between pfSense and VyOS

with respect to goodput (Figure 15) as the lines describing the

behaviors are superimposed.

Figure 11. Firewall comparison with 10 rules (RTT)

Figure 12. Firewall comparison with 1000 rules

(Throughput)

Figure 13. Firewall comparison with 1000 rules (RTT)

Figure 14. UDP jitter comparison

Figure 15. UDP goodput comparison

V. STATE OF THE ART

The use of virtualization in intrusion detection was addressed

by several research activities that were partly summarized in

[18]. Intrusion detection based on virtual machines offers

isolation of the monitored environment as well as interesting

features such as fast startup, shutdown and recovery. To

enhance the security in virtualized environments, the authors

of [19] developed an architecture that monitors the calls

issued by the hypervisor. In [20], the log files of the

virtualized IDS systems were analyzed using big data

techniques in order to cope with attacks quickly. In [21], a

distributed architecture was proposed where a central

controller manages separate instances of IDS settled for the

different users. The IDS instance will monitor the activities of

the user and build a knowledge profile that will be used as a

basis for further monitoring of this user. The approach that

has some common points with the one described in this paper

was discussed in [22]. Here, Intrusion Detection Systems as a

Service (IDSaaS) is implemented based on Amazon Elastic

Compute Cloud (EC2). Indeed, instances of EC2 VM type are

created to run security components in the infrastructure. The

detection mechanisms provided are completely controlled by

the users. Moreover, IaaS platforms traditionally offer

security services to increase protection on virtual resources.

AWS not only offers ACLs on each managed interface but

also provides monitoring on network and server usage, port

scanning activities, application usage and unauthorized

intrusion attempts [27]. Although the purpose of our work is

to design and implement a virtual security appliance as a

service, the focus of this paper is more on the investigation of

issues related to the deployment on well-known virtual

infrastructures such as OpenStack, VNF lifecycle, interaction

with the orchestrator, and performance.

VI. NEXT STEPS

This work was implemented and tested in a VirtualBox

environment, which does not count as a complete NFV

infrastructure. Future work for the proposed vSA appliance

includes deployment in a completely virtualized network

environment, e.g. OpenStack, in order to be tested and

validated in more complicated scenarios. The OpenStack

deployment may raise several networking issues in terms of

automated VNF deployment, Service Function Chaining

(SFC), traffic forwarding and inter-VM communication,

required for the vSA to function properly. The automated and

functional integration of this work’s vSA to OpenStack’s

networking environment, and more specifically to Neutron

service, is non-trivial and remains to be substantiated and

implemented as Neutron at the moment does not offer much

freedom and flexibility on arbitrary traffic steering. The future

added value of this work would be an automated, flexible and

efficient Security Appliance for virtualized network

infrastructures.

In order to support direct traffic forwarding, meaning the

virtual network interface of one Virtual Network Function

Component (VNFC) to be directly connected to another

VNFC’s virtual network interface, a modification on

Neutron’s OVS needs to be applied. Each virtual network

interface of a VNFC is reflected upon one TAP-virtual

network kernel device, a virtual port on Neutron’s OVS and a

virtual bridge connecting them. This way, packets travel from

the VNFC to Neutron’s OVS through the Linux kernel. The

virtual kernel bridges of the two VNFCs need to be shut down

and removed. Then an OVSDB rule needs to be applied at the

Neutron OVS, applying an all-forwarding policy between the

OVS ports of the corresponding VNFCs.

After the integration of the vSA with OpenStack, the vSA will

also be integrated with the entire T-NOVA framework. The

related issues such as the VNF Descriptor, the VNF lifecycle,

the interaction with the orchestrator, and VNF monitoring will

be implemented.

VII. CONCLUSION

In this paper, we have proposed a type of architecture for a

virtual security appliance combining different security

technologies including firewalling and intrusion detection.

We have also explained how this appliance could be

deployed in a virtual environment. As the implementation is

still ongoing, we have focused, in this paper, only on the

selection and use of the firewalling functionality. Here,

different test scenarios were defined in order to choose

between several potential open source “virtual” firewalls. In

addition to that, an overview of the current status of the

virtual security appliance implementation as well as the

challenges being faced was provided.

REFERENCES

[1] Snort, link: https://www.snort.org/

[2] Bro, link: https://www.bro.org/

[3] Suricata, link: http://suricata-ids.org/

[4] http://www.reddit.com/r/networking/comments/1rpk3f/evaluating_virtu
al_firewallrouters_vsrx_csr1000v/

[5] http://en.wikipedia.org/wiki/Comparison_of_firewalls

[6] Vyatta VyOS, link: http://vyos.net/wiki/Main_Page

[7] Pfsense, link: https://www.pfsense.org/

[8] Halon, link: http://www.halon.se/

[9] m0n0wall, link: http://m0n0.ch/wall/

[10] Vuurmuur, link: http://www.vuurmuur.org/trac/

[11] BMWG, link: https://www.ietf.org/proceedings/32/charters/bmwg-
charter.html

[12] http://core.kmi.open.ac.uk/download/pdf/11778682.pdf

[13] Iperf, link: https://iperf.fr/

[14] D-ITG, link: http://traffic.comics.unina.it/software/ITG/

[15] Ostinato, link: https://code.google.com/p/ostinato/

[16] Iptraf, link: http://iptraf.seul.org/

[17] VirtualBox, link: https://www.virtualbox.org/

[18] J. D. Araujo, Z. Abdelouahab, “Virtualisation in Intrusion Detection
System: A Study on Different Approaches for Cloud Computing
Environments”, IJCSNS International Journal of Computer Science and
Network Security, Vol 13, No 11, Nov 2013

[19] Bharadwaja, S.; Weiqing Sun; Niamat, M.; Fangyang Shen; ,
"Collabra: A Xen Hypervisor Based Collaborative Intrusion Detection
System," Information Technology: New Generations (ITNG), 2011
Eighth International Conference on , vol., no., pp.695 -700, 2011

[20] Shun-Fa Yang; Wei-Yu Chen; Yao-Tsung Wang; , "ICAS: An inter-
VM IDS Log Cloud Analysis System," Cloud Computing and
Intelligence Systems (CCIS), 2011 IEEE International Conference on ,
vol., no., pp.285-289, 15-17 Sept. 2011

[21] Dhage, S.N., Meshram, B.B.,Rawat, R., Padawe, S., Paingaokar, M.,
Misra, A. Intrusion Detection System in Cloud Computing
Environment, in International Conference and Workshop on Emerging
Trends in Technology(ICWET 2011) –TCET, Mumbai, India. 2011

[22] Turki Alharkan, Patrick Martin. IDSaaS: Intrusion Detection System
as a Service in Public Clouds. In 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Co mputing, pp 685-687,
2012

[23] T-NOVA project, link: http://www.t-nova.eu/

[24] ETSI NFV ISG. ETSI GS NFV 001 v1.1.1 Network Functions
Virtualisation; Use Cases. s.l. : ETSI, 2013.

[25] ETIS NFV ISG. ETSI GS NFV-MAN 001 V1.1.1 Network Function
Virtualization (NFV) Management and Orchestration. 2014-12

[26] ETSI NFV ISG. ETSI GS NFV-PER 002 V1.1.2 Network Functions
Virtualisation (NFV); Proof of Concepts; Framework. 2014-12

[27] Amazon Web Services: Overview of Security Process; 2015-08

https://www.snort.org/
https://www.bro.org/
http://suricata-ids.org/
http://www.reddit.com/r/networking/comments/1rpk3f/evaluating_virtual_firewallrouters_vsrx_csr1000v/
http://www.reddit.com/r/networking/comments/1rpk3f/evaluating_virtual_firewallrouters_vsrx_csr1000v/
http://en.wikipedia.org/wiki/Comparison_of_firewalls
http://vyos.net/wiki/Main_Page
https://www.pfsense.org/
http://www.halon.se/
http://m0n0.ch/wall/
http://www.vuurmuur.org/trac/
https://www.ietf.org/proceedings/32/charters/bmwg-charter.html
https://www.ietf.org/proceedings/32/charters/bmwg-charter.html
http://core.kmi.open.ac.uk/download/pdf/11778682.pdf
https://iperf.fr/
http://traffic.comics.unina.it/software/ITG/
https://code.google.com/p/ostinato/
http://iptraf.seul.org/
https://www.virtualbox.org/

	Virtual Security Appliances: The Next Generation Security
	I. Introduction
	II. use cases and context
	A. Use cases
	B. ETSI NFV ISG
	C. The T-NOVA project

	III. architecture
	A. Requirements
	B. High-level architecture

	IV. Implementation and performance
	A. Technology selection
	B. Performance
	C. Testbed setup
	D. Testing scenarios
	E. Tests results

	V. State of the Art
	VI. next steps
	VII. Conclusion
	References

