
Virtual Network Functions Deployment between

Business Expectations and Technical Challenges:

The T-NOVA Approach

Y. Rebahi/M. S. Ghamsi

Fraunhofer Fokus

Berlin, Germany

{yacine.rebahi;

majid.salehi.ghamsi}@fokus.fraunhofer.de

N. Herbaut, D. Negru

Viotech Communication SARL

Versaille, France

{ nherbaut, dnegru}@viotech.net

P. M. Comi, P. S. Crosta

Italtel

Settimo Milanese, Italy

{ paolomaria.comi, paolosecondo.crosta}@italtel.com

P. Lorenz

 University of Haute Alsace

 IUT - 34 rue du Grillenbreit

 68008 Colmar - France

lorenz@ieee.org

E. Pallis, E. Markakis

Informatics Engineering

Technological Educational Institute of Crete

Crete, Greece

{Pallis, Markakis}@pasiphae.teicrete.gr

Abstract ð This paper belongs to the series of research documents

describing the progress in the specification and development of the

T-NOVA framework offering a marketplace for virtual network

functions. T-NOVA is an international research project co-funded

by the European Commission. Although, the idea of having a

marketplace enabling buying, composing, and deploying ñvirtualò

services on the fly is promising, its implementation or prototyping

remains far from realization. This is mainly due to the limitations

in the existing cloud computing platforms on top of which the

services should be built. In this paper, we discuss the T-NOVA

approach and in particular some of the Virtual Network Functions

(VNFs) that have been developed in this context. Special attention

is paid to the design and specification of the VNFs as well as the

related technical challenges that were faced when deployed within

the marketplace. Some experiments and test results are also

provided.

Keywords -- NFV; T-NOVA; Marketplace; Security; OpenStack;

Content Delivery

I. INTRODUCTION

The main goal of Network Function Virtualization (NFV) is
to offer network functions onto industry standard high volume
servers, switches and storage systems [1]. The use of NFV will
enable telecom operators and service providers to go beyond the
limitations dictated by hardware based appliances, and meet
their objectives in terms of revenue increase and growth plan.

In [1], a sample of Network Functions that can be virtualized
was given. This includes, IPSec, VPN Gateway, DPI, AAA
servers, and SBCs. In fact, any data plane packet processing and
control plane function in mobile and fixed networks can be
virtualized [1].

It is worth mentioning that in spite of the progress we have seen
during the last years, especially in the context of standardizing
NFVs, the related technology is still not mature enough to be
deployed. What is also missing is a business model where
various stakeholders collaborate in order to offer Virtual
Network Functions (NFVs) and build added value services on
top of that. In fact, this is the idea behind the T-NOVA project
[2] where a marketplace for purchasing VNFs and deploying
them on the fly has been developed. In the current paper, we will
discuss the T-NOVA approach, in particular the progress in the
specification and the development of the related framework.

This paper is organized as follows: Section II overviews the

T-NOVA architecture in which the marketplace and the VNFs

are being specified and developed. Section III provides a short

description of a sample of VNFs that have been developed as

well as potential integration scenarios. In section IV, we

discuss some experiments for validating the VNFs under

consideration, and section V is the conclusion.

II. THE T-NOVA ARCHITECTURE

Taking into account the required functionalities of the T-NOVA

project and building upon the ETSI NFV standard, we present

a four-layered architecture. The figure below delineates the

design.

Figure 1. T-NOVA high-level architecture approach

The T-NOVA architecture can be progressively structured into

four design layers each of which is populated by an

arrangement of useful parts. (i) The NFV Infrastructure (NFVi)

layer incorporates the physical and virtual machines (i.e. item

servers, virtual machines, stockpiling frameworks, or switches)

where all are conveyed to a common infrastructure; (ii) the

NFVi Management layer understands the diverse

administration segments to be more specific, the Virtualized

Infrastructure Management (VIM) and the Transport Network

Management (TNM). Both segments might be alluded to as

Infrastructure Virtualisation and Management (IVM); (iii) the

Orchestration layer depends on the Orchestrator segment, and

it additionally incorporates the NF Store; lastly (iv) the

Marketplace layer contains all the client confronting modules,

which encourage multi-inhabitant contribution and execute

business-related functionalities.

A. The Marketplace

The benefits of NFV compared to dedicated infrastructure are

multifarious: cost-efficient, time-to-business sector decrease,

adaptable and so on. However, it also brings various difficulties

that must be settled to empower its huge reception in the

business sector.

Specifically, the key point can be the advancement of

development by opening a part of the systems administration

and changing it to a novel virtual apparatus market,

encouraging the association of programming participants,

including SMEs and even academia. Besides the fast

presentation of novel system capacities (counting redesigning

of existing ones) at a much lower cost and reduced hazards,

prompting huge abatement of Time-To-Market (TTM) for new

arrangements remain key issues in the NFV Market.

Keeping in mind the end goal to encourage the association of

assorted performing artists in the NFV scene, a creative

"Virtual Network Function Marketplace" that can take after the

worldview of officially effective OS-particular "Application

Stores" is required. The VNF Marketplace, which can be kept

up by a Service supplier, can contain VNFs made and provided

by a few outsider engineers, distributed as autonomous

elements and accompanied with the fundamental metadata

(counting exchanging data as a major aspect of the Virtual

Network Function Descriptor). The Marketplace will permit

clients to choose the virtual machines which best match their

requirements, "plug" them into their current network benefits

and arrange/adjust them as indicated by their necessities.

So, as to encourage competition and backing diverse value

chain setups, a Brokerage Platform can likewise be set up,

permitting clients to execute with the Service Provider and

different outsider Function Developers for selecting the best

Service that suits their requirements. After getting what the

Service Provider asks for, the Brokering module will look at i)

the accessible Network and IT assets and ii) the accessible

capacities at the Function Store and concoct particular

financial/specialized offerings and related charging models.

Via the Marketplace and the Brokerage platform, we promote a

novel Marketplace for NFV, introducing new business cases

and considerably expanding market opportunities by attracting

new entrants into the networking market.

New architectural elements that will allow the validation and

verification of the admitted VNFs will be required in order to

streamline and accelerate the adoption of new VNFs in the

Marketplace.

Contrasted with the ETSI reference architecture below and as

indicated by Figure 1, the commercial center is totally novel

concerning ETSI. This proposition presents the commercial

center idea going for opening the NFV business sector to

outsider designers for the procurement of VNFs, an idea that

right now falls outside the specialized perspective of ETSI

NFV.

Figure 2. ETSI NFV architecture with the proposed

marketplace

B. VNFs between T-NOVA and ETSI

As the Virtual Network Function Descriptor (VNFD) was

introduced by ETSI, the T-NOVA project has used this

descriptor that contains a variety of information (e.g. CPU,

Memory, Virtual Deployment Units etc.) and extended it in

order to take into account new requirements, such as (a) Node

definition, (b) Link connectivity definition, and (c) the Service

Level Agreement (SLA) based on the VNF performance. The

above requirements were introduced in new fields inside the

ETSI VNFD [21] descriptor and in a second stage uploaded to

a component of the T-NOVA architecture that is able to

understand and react to the new parameters.

In order to consider the relationship between the Service

Provider (SP) and the Function Provider (FP), a Network

Service Descriptor (NSD) was defined, compliant to the ETSI

NSD, and stretched out by the T-NOVA project keeping in

mind the end goal to address the confirmation parameters for

the purchaser of the Service. These affirmation parameters are

characterized by the available kind of administration and are

utilized as a part of requesting the orchestrator to store them

inside and together with the VNF descriptor, put away in the

Function store to enable the TeNOR orchestrator [22] for a

choice on the Service Mapping Problem [23].

The list of services is then presented inside the T-NOVA

Dashboard where the info provided inside the VNFD is used in

order to create the said list.

Identify applicable sponsor/s here. If no sponsors, delete this text box

(sponsors).

The descriptor provides information about the available

Connection Points, the physical resources, etc. achieving in this

way (see Figure 3) a Visual representation of the described

VNFD.

Figure 3. Representation of VNF with defined VNFD

In the visual representation of the VNFD, we can see in orange

the various connection points defined inside the VNFD. These

connection points are attached to networks which later will be

used for inter and intra communication of the various

functionalities that a VNF can provide. In the figure above, we

also have internal orange dots and external ones. The main

difference is that the internal ones define inter-communication

inside the various internal services of the VNF while the

external dots are used as connection points among the external

networks. Finally, we can see the CPU, Memory and storage

that this VNF has attached.

C. The VNF High level description

In T-NOVA, a VNF is defined as a group of Virtual Network

Function Components (VNFC), each of them consisting of a

single Virtual Machine. Each VNF shall support the T-NOVA

VNF lifecycle (i.e. start, stop, pause, scaling, etc.) under the

control of the VNF Manager (VNFM) entity in the orchestrator

layer. VNF developers who aim to develop new

VNFs shall follow the common practices introduced in the T-

NOVA framework. With the exception of some mandatory

blocks (described in the following), the internal

implementations of a VNF is left to the VNF developer,

nonetheless, the adoption of a common structure for VNF

components as depicted in Figure 4 is recommended.

Figure 4. VNF internal components

The VNF Controller is the internal component devoted to the

support of the VNF lifecycle. The Init Configur ation

component is responsible for the initialization of the VNF that

happens at the beginning of the VNF execution. The

Monitoring Agent component transmits both system and

application-level monitoring data towards the Monitoring

System [24].

All the VNF internal components are optional, except for the

VNF Controller. The VNF Controller often acts as a VNF

Master Function and is responsible for the internal organization

of the VNFCs into a single VNF entity [25]. It must be present

in each VNF because it is in charge of supporting the T-Ve-

Vnfm interface (defined in [26]) towards the VNFM. VNF

developers are free to develop VNF internal components in any

way they prefer as long as they comply with the VNF lifecycle

management interface T-Ve-Vnfm.

In the case of a composed VNF, the internal VNF components

required by T-NOVA can be allocated in many different ways.

The minimal mandatory requirement is that each VNF must

have only one VNF controller. The other components, i.e. Init

Configuration and Monitoring Agent, can be optionally

allocated in the different VNFCs. Figure 5 provides an example

of a VNF composed by two VNFCs. In this case, the Init

Configuration component is allocated in all the VNFCs, while

there is only one Monitoring Agent. Of course, other

configurations are possible depending on the particularities of

the VNF.

Figure 5. The T-NOVA architecture ï VNF internal

components in multi VNFCs VNF

D. The VNFs life Cycle

Each VNF shall have a management interface, named T-Ve-

Vnfm interface that is used to support the VNF lifecycle. The

VNF lifecycle is implemented by events generated by the

VNFM towards the VNF Controller in each VNF.

The VNF lifecycle is shown in Figure 6.

Figure 6. VNF lifecycle

In the T-NOVA project, we have defined the following states:

¶ Development: Software implementation of Network

Functions (Nfs). NFs are published and aggregated in

the T-NOVA Function Store.

¶ Validation : The validation procedure aims at

providing a certification that the developed NFs will

work as expected.

¶ Publication: NF publication is performed at the NF

Store, whose repository hosts both the function Virtual

Deployment Unit (VDU) images and the associated

description/metadata (VNFD)

¶ Brokerage: undertaken by the brokerage module in

the marketplace that matches usersô service

requirements with the technical capabilities provided

by the NFs, thus ensuring that the resources required

for NFs deployment are available.

¶ Selection: Finally, the customer selects the most

suitable NFs according to their needs.

¶ Deployment: The VNF VM image and its metadata

are transferred from the NF Store to the virtualized

infrastructure.

¶ Management: This is the running phase of the NF.

Through the T-Ve-Vnfm interface, the VNF Manager

controls the VNF active states. They are: Setup of the

VNF, Start and Stop of the service provided by the

VNF, Scale of the VNF resources (scale-out and in).

¶ Termination : Involves the removal of the NF instance

from the virtualized infrastructure, including network

re-configuration, if needed.

An extended description of the VNF lifecycle can be found in

[24].

In accordance to ETSI MANO [21], the interaction between

VNFM and VNF, implementing the VNF lifecycle, is

thoroughly described in the VNF Descriptor (VNFD) that

contains a section called "lifecycle_event", providing all the

details to allow the VNFM to interact with the VNF in a fully

automated way.

To this aim, each VNF needs to be able to declare various

lifecycle events (e.g. start, stop, scale out...). For each of those,

the information needed to configure the VNF can be very

different. Moreover, the command to trigger the re-

configuration of the VNF can change between events.

The information related to the VNF life-cycle is inserted in the

ñlifecycle_eventò section of the VNFD. In particular, in such a

section the following information is available:

¶ Driver : the protocol used for the connection between

the VNF Manager and the controlling VNFC.

Currently T-NOVA supports two protocols: SSH and

HTTP.

¶ Authentication: such fields specify the type of

authentication that must be used for the connection

and some specific data required by the authentication

process (e.g. a link to the private key injected by the

VNFM at initialization time or HTTP credentials).

¶ Template File Format: specifies the format of the file

that contains the information about the specific

lifecycle event, and that must be transferred once the

command is run.

¶ Template File: includes the name and the location of

the Template File.

¶ VNF Container: specifies the location of the

Template File.

¶ Command: defines the command to be executed

E. VNFC Networking

According to the T-NOVA architecture, each VNFC should

have four separate network interfaces, each one bound to a

separate isolated network segment. The networks related to any

VNFC are: management, datapath, monitoring and storage. The

figure (Figure 7) illustrates the above statement. In various

cases, the above rule might not be followed, especially in the

case where there is no real requirement for a particular

network/interface e.g. a VNFC that is not using persistent

storage on the storage array of the NFVI.

Figure 7. VNF/VNFC Virtual Links and Connection Points

The management network provides the connection and

communication with the VNFM and passes lifecycle related

events seamlessly to the VNF. The management network

conveys the information passed over from VNFM to the VNF

Controller (T-Vnfm-Vnf interface). The VNFM can control each

particular VNFC, through the management interface, and

provision the overall stable functionality of the VNF.

The datapath network provides the networking for the VNF

to accept and send data traffic related to the network function it

supports. For example, a virtual Traffic Classifier would

receive the traffic under classification from this interface. The

datapath network can consist of more than one network

interface that can receive and send data traffic. For example, in

the case where the function of the VNFC is a L2 function (e.g.

a bridge), the anticipated interfaces are two, one for the ingress

and another one for the egress. In some cases, those interfaces

might be mapped on different physical interfaces too. The

number of interfaces for the datapath and their particular use is

decided by the VNF provider. Additionally, the data traffic that

needs to be shared among different VNFCs uses the datapath

network.

The monitoring network provides the communication with the

monitoring framework. Each VNF has a monitoring agent

installed on each VNFC, which collects VNF specific

monitoring data and signals them to the Monitoring Framework

(see [27]) or to the VNFM/EM depending on the situation. The

flow of the monitoring data is from the VNF service to the

monitoring agent to the framework, which collects data from all

VNFs. A separate Monitoring network has been introduced in

T-NOVA to cope with the amount of traffic generated in large-

scale deployments. Though, the monitoring traffic can be easily

aggregated with the management traffic into a single network

instance, if this solution results adequate to the specific

application.

The storage network is intended for supporting

communication of the VNFCs with the storage infrastructure

provided at each NFVI. This applies to the case where a VNFC

will utilize persistent storage. In many NFVI deployment

scenarios, the physical interface that handles the storage

signaling (e.g. iSCSI) on each compute node is separated from

the other network segments. This network segment is

considered optional and only applicable to the above use cases.

F. The VNF Forwarding Graph Descriptor

The creation of an end-to-end network service needs to define

inter-communication among the various Virtual Network

functions as displayed in figure 3 where the external part of the

VNFD is ready to be used for Inter-communication with other

VNFs. This inter-communication among the VNFôs is defined

by the VNF Forwarding graph (VNFG) providing a description

of how and which connection point is linked among the various

NSD of the VNFs. The forwarding graph must take into account

various aspects like how we can reduce the configuration

complexity in order to achieve a simpler and straightforward

forward graph defined as efficient and resilient in order to

achieve the best Agility. Taking all this into account, we have

implemented a visual tool inside the T-NOVA Marketplace that

provides all necessary means for specifying the attribute of each

VNF to the desired VNFG (see VNFG configuration below).

Figure 8. VNFG configuration generation

The output configuration is done by enabling connection links

in a visual manner inside the T-NOVA Dashboard and creating

an output of how the various VNFs are inter-connected. The

output displayed above provides the ability to configure and

generate the necessary inter-connection of the external

networks of the various VNFs. Furthermore, the various

networks are clearly defined in order to allow the Migration and

coexistence of virtualized and non-virtualized NFs. In figure 10

we see with the red line how a forwarding graph is created in

order to utilize various Points of Presents and connecting the

end user with the vProxy Appliance.

III. EXAMPLES OF DEVELOPED VNFS

Several VNFs are being developed within the T-NOVA Project.

On top of implementing and fine-tuning the software to achieve

design goals, these functions have been integrated within the

platform following the design decisions presented in previous

sections. Even if they leverage the T-NOVA framework like

specific marketplace integration and monitoring, the core

functionalities can be ported easily to compliant NFV

platforms.

A. The Virtual Security Appliance

A Security Appliance (SA) is simply a ñdeviceò designed to

protect computer networks from unwanted traffic. This device

can be active and block unwanted traffic. This is the case for

instance of firewalls and content filters. A Security Appliance

can also be passive. Here, its role is simply detection and

reporting. Intrusion Detection Systems are a good example. A

virtual Security Appliance (vSA) is a SA that runs in a virtual

environment. In the context of T-NOVA, we have suggested a

vSA composed of a firewall, an Intrusion Detection System

(IDS) and a controller that links the activities of the firewall and

the IDS. The vSA high level architecture was discussed in detail

in [10]. The idea behind the vSA is to let the IDS analyze the

traffic targeting the service and if some traffic looks suspicious,

the controller takes a decision by, for instance, revising the rules

in the firewall and blocking this traffic. The architecture of this

appliance is depicted in figure 9 and includes the following

main components.

Figure 9. vSA high level architecture

The firewall: this component is in charge of filtering the traffic

towards the service.

The Intrusion Detection System: In order to improve attack

detection, a combination of a packet filtering firewall and an

intrusion detection system using both signatures and anomaly

detection is considered. In fact, Anomaly detection IDS have

the advantage over signature based IDS in detecting novel

attacks for which signatures do not exist. Unfortunately,

anomaly detection IDS suffer from high false-positive detection

rates. It is expected that combining both arts of detection will

improve detection and reduce the number of false alarms. In T-

NOVA, the open source signature based IDS ([3]) is used and

will be extended to support anomaly detection as well. The

mode of operation of the IDS component was also discussed in

[10].

The FW Controller: this application looks into the IDS "alerts

repository" and based on the related information the rules of the

firewall are revised.

The Monitoring Agent: this is a script that reports to the

monitoring server the status of the VNF through some metrics

such as (Number of errors coming in/ going out of the

WAN/LAN interface of pfsense, Number of bytes coming in/

going out of the wan/lan interface of pfsense, CPU usage of

snort, Percent of the dropped packets, generated by snort, etc)

The vSA controller: this is the application in charge of the vSA

lifecycle (for more details, we refer to section II -D).

B. The Virtual Proxy

vPXaaS (virtual Proxy as a Service) provides proxy services on

demand to both Internet Service providersô (ISP) subscribers:

Å Home users e.g. DSL subscribers.

Å Corporate users e.g. company subscribers.

The idea behind using the proxy as a VNF is to move it from

the LAN to the cloud to be used ñas a serviceò. Nevertheless, a

subscriber (LAN administrator) will be able to configure the

proxy from a web-based user friendly dashboard.

Figure 10. vProxy high level architecture

The PXaaS vNF was developed in the context of T-NOVA and

offers the following features,

Å Web Access control

Å Bandwidth control (Web traffic)

Å Web site filtering

Å Web caching

Å User anonymity

C. The Virtual Session Border Controller

A Session Border Controller (SBC) provides network

interconnection and security services between two IP networks.

It operates at the edge of these networks and is used whenever

a multimedia session involves two different IP domains. It

performs:

¶ the session control on the ñcontrolò plane, adopting

SIP as a signaling protocol [28];

¶ several functions on the ñmediaò plane (i.e :

transcoding, trans-rating, NAT, etc), adopting Real

time Transport Protocol (RTP) for multimedia content

delivery.

The vSBC is the VNF implementing the SBC service in the TȤ
NOVA virtualized environment. It is a prototype version of the

commercial SBC that Italtel is developing for the NFV market.

General requirements for vSBCs comprise both essential

features (such as: IP to IP network interconnection, SIP

signaling proxy, Media flow NAT, RTP media support) and

also advanced requirements (such as: SIP signaling

manipulation, realȤtime audio and/or video transcoding,

Topology hiding, Security gateway, IPv4-IPv6 gateway,

generation of metrics, etc.). For the objectives of the T-NOVA

project, we focus on all essential features and a subset of

advanced requirements (i.e. IPv4-IPv6 gateway; realȤtime

audio and/or video transcoding for mobile and fixed network;

metrics generation; etc).

Figure 11. Enhanced vSBC internal architecture (with DPS

component).

¶ SIP Load Balancer (LB): balances the incoming SIP

messages, forwarding them to the appropriate IBCF

instance.

¶ Interconnection Border Control Function (IBCF):
implements the control function of the SBC. It

analyzes the incoming SIP messages, and handles the

communication between disparate SIP endpoint

applications. The IBCF extracts from incoming SIP

messages the information about media streams

associated to the SIP dialog, and instructs media plane

components (DPS and/or BGF) to process them.

¶ Border Gateway Function (BGF): processes media

streams, applying transcoding and transrating

algorithms when needed (transcoding transforms the

algorithm used for coding the media stream, while

transrating changes the sending rate of IP packets

carrying media content). This feature is used whenever

the endpoints of the media connection support

different codecs, and it is an ancillary function for an

SBC because, in common network deployments, only

a limited subset of media streams processed by the

SBC need to be transcoded. The BGF is controlled by

the IBCF using the internal BG ctrl interface. If the

transcoding /transrating function is implemented by a

pure software transcoder its performances

dramatically decrease, unless GPU (Graphical

Processing Units) hardware acceleration is available in

the virtual environment. Otherwise this issue could be

mitigated by running more BGF instances. The BGF

component can also provide metrics to the T-NOVA

monitoring agent;

¶ Operating and Maintenance (O&M): it supervises

the operating and maintenance functions of the VNF.

In a cloud environment, the O&M module extends the

traditional management operations handled by the

Orchestrator (i.e. scaling). The O&M component

interacts (via HTTP) with the VNF manager, using the

T-Ve-Vnfm interface, for applying the T-NOVA

lifecycle;

¶ Data Plane Switch (DPS): it is the (optional) front-

end component of the vSBC based on DPDK

acceleration technology available in Intel x86

architectures to reach a performance level comparable

to the hardware-based version adopting HW

acceleration technologies. This component can use the

same IP address, as ingress or egress point, both for

signaling and media flows. Its goal is to provide high

speed in processing the addressing information in the

header of the IP packet, leaving the payload

untouched. The DPS is instructed how to manage the

IP packets by the IBCF component, acting as an

external controller using an internal dedicated DPS

ctrl interface (see Figure 11ϋ. The DPS component

can:

Ǔ either provide the packet forwarding to the BGF

(in case of transcoding)

Ǔ or apply a local Network Address Translation

(NAT)/port translation

D. The virtual Content Delivery Network.

Content Delivery networks (CDN) have been created to cope

with the challenges encountered by Content Providers (CP) to

deliver huge amounts of static data through best effort Internet.

ISPs are interested in building these solutions as they represent

an interesting growth driver.

Described by ETSI as a virtualization use case [14], vCDN fits

well in the T-NOVA project due to the specific challenges of

its implementation in an operator network, technical

breakthroughs made possible by the NFV approach and

business model innovation for ISPs.

Using their substrate to deploy vCDN architecture [15] allows

the ISPs to benefit even more from the creation of Next

Generation Point of Presence ([16], [17]), designed to host VNF

at the edge of their network and to leverage their end-to-end

network management. Furthermore, the increased flexibility

offered by placing caches in POPs coupled with sophisticated

service mapping models, enable them to provide solutions for

Content Providers Quality of Experience requirements.

Besides, using NFV enables the deployment of better

alternatives to handle Service-User assignment tasks, like the

Virtual Media Gateway we have introduced in this work.

Finally, Network Function scaling is used to adapt to

fluctuating content delivery demand and content ingestion

requirements.

Our proposal is developed around 4 main modules:

¶ The Virtual Media Gateway (VMG) : is a transit

Network Function inspecting high-level HTTP traffic

that can influence the IP routing decisions, based on

the presence of the content in a nearby POP. Its

configuration is provided by the caching orchestrator

which has a complete vision of the system.

¶ The Content Streamers: are built around a

distributed object storage engine that provides

resiliency, horizontal scalability and geographical

redundancy amongst POPs.

¶ Content Ingestors: are scalable workers that perform

software transcoding to H264 and H265 video

compression standards as well as re-segmentation of

videos using both DASH [19] and HLS technology to

provide adaptive HTTP Streaming capability.

Ingestors receive content from the CP Servers (push

model) or can be automatically provisioned from the

most popular contents (pull model). Ingestors have

been shown to be able to rely on hardware accelerators

(Virtual Transcoding Units, also part of the T-NOVA

Project [20]) for computer intensive tasks when

available.

¶ Caching Orchestrator: is the module in charge of

controlling the ingestion (by scheduling the job of the

workers), the provisioning (by selecting which content

Figure 12. VCDN High Level Architecture

is cached in which streamer) and the delivery (by

deploying configuration on the VMG) of content

¶ Technical considerations (a case for using

containers for the T-NOVA architecture) : The only

implementation available for what ETSI calls

Virtualization Deployment Unit (VDU) are Virtual

Machine Images. It means that whenever any software

component requires an update (bug fix, or a new

feature), a new VM Image needs to be generated,

tested and deployed in the system. Even if this cycle is

fully automated and carried out without human

intervention, from a software engineering standpoint,

streamlining this process is time consuming. It can

take several hours to test a simple modification due to

VM image processing, VM image transfer to the

remote testbed and finally VNF embedding. To

circumvent this issue, we packaged all our software

using Docker containers technology. Without any

drawback in terms of performance, we saved hours of

tedious manipulation by injecting frequently updated

Docker images into the same vanilla VM Image at

VNF embedding time (saving the time or VM Image

generation and transfer). Containers technology

allowed us to increase software agility without

sacrificing runtime performances.

IV. INTEGRATION OF VNFS AND SERVICE CHAINING

In this section, we describe a couple of scenarios showing how

different VNFs can be integrated with each other. To achieve

this, some real life scenarios were imitated.

A. The vSA-vProxy scenario

One way to integrate the vSA and the vProxy is to put them

together to reflect a proxy scan attack detection. The latter

means the attacker tries to find potential proxies to use them

utilizing a port scan attack. Port scanning is a general technique

used to survey one or more network connected hosts for

availability. Port scanning is often called network scanning. We

may scan a host for more specific services. Typically, we may

check that one server responds on TCP port 80 (HTTP) to

ensure that our Web service is up and running. The vSA-vProxy

works as follows,

Á The IDS (Snort) in the vSA is configured to detect port

scan attacks)

Á Nmap [11] sends packets (supposed to be the attacker)

Á The packets are intercepted by the Firewall

Á The packets are also analyzed by the IDS

Á Port scan attack detected, IDS instructs the Firewall to

block traffic coming from the IP address of Nmap

B. The vSA-vSBC scenario

The integration of the vSA and the vSBC also makes sense if

we look at it as a VoIP service enhanced with security at layers

three and four. The combination of vSA and vSBC allows

implementing a multi-layer approach to the security of the

signaling layer. The role of the vSA is to secure the IP, TCP and

UDP protocols, while the vSBC provides security at SIP level.

This integration could also be seen as a Border Control

Function (BCF) of the IP based Emergency Services Network

(ESInet) where the BCF has to be a combination of a firewall

and a SBC in order to protect the ESInet [12] and the Public

Answering Points (PSAPs) from malicious traffic.

V. EXPERIMENTATION

In this section, we discuss some of the experiments we

performed in order to validate our work. Although different

aspects have been tested, our focus in this paper is more on the

performance issue. In fact, in the past, the performance of the

appliances was achieved through dedicated hardware. In

virtualized environments, this is not possible because different

applications might run on the same operating system and

compete for the same hardware computing resources.

A. vSA testing

To study the performance of the security appliances (in

particular the firewalls), appropriate metrics are needed.

Although the activities in this area are very scarce, we described

in [10] potential metrics that could be used. This includes

throughput, latency, jitter, and goodput. For more detail please

refer to [10].

For simplicity reasons, we have used Iperf [5] for generating IP

traffic in our tests. In fact, other IP traffic generators such as D-

ITG [6], ostinato [7], and IPTraf [8] could have also been

utilized. Iperf mainly generates TCP and UDP traffic at

different rates. Diverse loads (light, medium, heavy) and

different packet sizes are also considered. For analyzing IP

traffic, we used ñtcpdumpò for capturing it and ñtcptraceò to

analyze it and generate statistics. The main difference with

respect to the tests performed in [10] is the fact that in this

paper, the tests are performed on a cloud computing platform

(not simply in VirtualBox [9]) namely, Openstack [13]. This

also enables the testing of some networking functionalities of

OpenStack as the latter does not offer much freedom and

flexibility on arbitrary traffic steering. Similarly to [10], the

undertaken tests are based on three main scenarios,

Á Scenario one (No firewall): Here, we configure and check

the connectivity between the Iperf client and the virtual

proxy without a firewall in between. This enables us to test

the capacity of the communication channel

Á Scenario two (TCP traffic with firewall and no rules):

Here, we check whether the introduction of the vSA (in

particular, the firewall in between) generates extra delay.

We also test the capacity of the vSA in this context

Á Scenario three (with firewall and increasing number of

rules): the objective of this scenario is to study the effect of

introducing rules into the firewall of the vSA. To achieve

this scenario, a script for the firewall is implemented in

order to generate rules in an automatic way. The script is a

shell script using specific API commands and generates

blocking rules for random source IP addresses (excluding

those used in the test setup) and the WAN interface. Here,

the easyrule function of pfsense is extended. In this

scenario, some tests are also performed using UDP instead

of TCP

Figure 13. vSA throughput

When no firewall is used between the Iperf client and the virtual

proxy, one can note that the throughput of the communication

remains good (between 700 and 800 Mbit/s) as long as the

number of 60 parallel connections is not exceeded. When the

vSA (in particular the firewall) is in between, the throughput

varies between 700 and 750 Mbit/s as long as the number of

parallel connections does not exceed 20 connections. When the

number of connections goes beyond the value 60, the

throughput for the vSA without firewall rules decreases slowly

to reach 580 Mbit/s when 100 connections are opened (Figure

13). This situation becomes worse when rules are configured on

the firewall. Indeed, the throughput decreases to 480 Mbit/s

when 3000 rules are configured and 100 connections are

opened (Figure 13).

B. vSBC testing

The vSBC was tested in a laboratory for studying the load curve

characterization under traffic conditions. As introduced in the

previous sections, the SBC is logically composed by signaling

and media planes. The signaling plane processes SIP messages

while the media plane works on RTP packets, under the control

of the signaling plane. This intrinsic architecture suggests a

deployment scenario composed by separate virtual machines

for the two planes.

The configuration under test was composed by two VMs,

namely VDU1 performing the SIP load balancer and the IBCF

control function, and VDU2 dedicated to the media plane

peforming the BGF.

VDU1 was configured with 8 virtual CPUs and 16 Gb of

memory.

VDU2 was configured with 8 virtual CPUs and 4 Gb of

memory.

The testbed configuration was as follows:

¶ Server HP ProLiant DL380 G5, single server equipped

with 2 Processors Quad-Core Intel® Xeon® Processor

E5335 (2.00 GHz), Memory 32 GB.

¶ CentOS (version 7.2)

¶ Openstack (Liberty)

The traffic conditions were simulated by different traffic

generators emulating SIP and Media flows towards the vSBC.

The open-source SIPP [29] protocol generator was used to test

the control plane. More sophisticated tests were performed by

using commercial traffic generators such as Catapult and

NeTracker. The latter was able to test both the signaling and

media planes.

The goal of the test was to measure key performance indicators

under different traffic conditions. These indicators were CPU

load, memory usage, and network throughput.

The following diagrams report the test results in case of 0, 10,

60, 120, 240, 500 parallel sessions for a NAT service for G.711

codec with 20ms of packetization time. The sessions refer to

calls of 120 seconds in duration.

The CPU load of the signaling layer smoothly increases with

the number of sessions, while the media layer is heavily

impacted (see Figure 14).

Figure 14. vSBC CPU load

Figure 15. vSBC signaling layer throughput

The throughput of the signaling layer is represented in Figure

15. The throughput of the media layer, represented in Figure 16,

has a similar behavior. Of course there is a difference of several

order of magnitude due to the large amount of media packets

with respect to the associates signaling messages.

Figure 16. vSBC media layer throughput

From the laboratory tests we learned that when the traffic

increases to around 900 parallel sessions, the system starts

suffering and dropping packets. This is a limit situation for the

described configuration that could be managed either by

limiting the traffic or implementing a scale-out procedure.

Currently scaling is under final development and meaningful

figures are not available yet.

C. vCDN testing

For testing purposes, the vCDN can be seen as a chain of micro-

services working together to implement the function. Having

several components interacting together augments the

complexity of the task of characterizing the bottlenecks of the

solution. We also need to take into account the fact that absolute

performance is not really meaningful for scalable applications

since adding additional resources increase the processing

capacity and the state of the cloud environment hosting the

solution can vary over time, along with the performances.

We carried out our experiments in a fully-fledged NFV

Infrastructure deployed within the T-NOVA project for a

baseline configuration of 5 Virtual Machines (with 4 vcore and

4GB of RAM each). We only present high level performance

results corresponding to the 2 end-to-end scenarios: Ingestion-

Provisioning and Delivery.

1) Testing vCDN Ingestion-Provisionning

For the vCDN, ingestion means deploying the original content

in the object store, analyzing this content, deciding which the

optimal format for the content is and producing the adapted

content. It is a very CPU and memory intensive task that can be

easily scaled with the adjunction of a ñworkerò VM. Figure 17

shows a setting where we let the system ingest 200 videos of 20

MB at an average arrival rate of 30 videos per minute. We

compare the number of ñpendingò video jobs that are queued

by the system for several settings. We scaled our VNF out and

allowed the number of ingestion VM to vary.

We can see that the configuration with only 1 VM doesnôt cope

with the load as it accumulates more than 120 pending videos

and it depletes its video stock in more than 900 s. On the

contrary the 3 VM setting manages to finish nearly on time

(420s).

Thanks to this design the number of ingestion-provisioning VM

can be adjusted based on the characteristics of the videos and

on the tolerance to delay of the customer.

2) Testing the vCDN Delivery

The overall performance of the delivery part of the vCDN

depends to a large extent on the network performances between

Figure 17. VCDN Ingestion-Provisionning Performances

the object storage nodes. Indeed each content is chunked and

spread on several nodes to provide redundancy and increase

performance. Furthermore, the Virtual Media Gateway is used

to inspect HTTP Packets, which may also cause delay and

reduced throughput.

In Figure 18 we used apacheôs ab tool to compute the 95

percentile maximum time taken to download a 10s, 6 MB video

file encoded as 600 KBps. We increased the number of

concurrent connections to establish the threshold above which

the video cannot be streamed at its nominal bitrate for the 5VM

baseline configuration.

We can see two important results from the graph. First of all,

thereôs no significant difference between the performance of

storage with or without the VMG. It means that the storage is

the bottleneck in this case and the VMG does not need to be

scaled-up to increase performance. Next, the video can be

streamed by 250 simultaneous users. This value is strongly

correlated to the underlying state of the network on our

infrastructure and also on the storage technology used in the

platform. For example, our object storage engine is designed to

use SSD disks to boost the delivery of the most used files. This

feature was not available on our infrastructure and could have

dramatically increased performances, especially for internet

content where only a small number of items are popular while

the rest remain unknown.

VI. NFV ARCHITECTURES SURVEY

This section provides a short summary of a number of NFV

platforms and architectures as proposed by industry

frameworks and solutions as well as efforts from

Standardization Bodies related to NFV. For a more detailed

description, we refer to the T-NOVA deliverable D2.22 [30].

ETSI ISG NFV: A network operator led Industry Specification

Group (ISG) with open membership was setup in the last

quarter of 2012 under the umbrella of ETSI to work through the

technical challenges of Network Functions Virtualization. It is

worth noting that ETSI ISG NFV does not provide standards

but rather produces guideline documents in the form of Group

Specifications. The outputs are openly published and shared

with relevant standards bodies, industry Fora and Consortia to

encourage a wider collaborative effort. A PoC of T-NOVA end-

to-end orchestration has been recently accepted by ETSI [31].

It will verify that E2E Service Orchestration enables the VNF

to run on top of the NFVI and is able to optimize the location

and required resources of the VNFs.

TM Forum (TMF) : TMF is a global trade association of

service providers and suppliers with the overall objective of

progressing and succeeding in the digital economy. In short,

TM forum works in 4 key areas: Business & IT transformation,

Business metrics and KPIs, Cybersecurity and Managing

Virtualized Networks and Services. It is in the context of this

last mentioned area where TMF has recently kicked off a major

new project with the aim of creating a blueprint for a new

generation of service provider support systems to achieve

business agility when delivering virtual network and services;

it is the zero-touch orchestration, operations and management

(ZOOM) project [32].

CloudNFV: It is an open platform for implementing NFV based

on cloud computing and SDN technologies in a multi-vendor

environment. The companies currently involved are: 6WIND,

CIMI Corporation, Dell, Enterprise Web, Overture Networks,

and Qosmos. It has been recently accepted as a proof of concept

(PoC) in the frame of ETSI NFV ISG. CloudNFV builds on the

NFV ISG work in order to validate it within the broadest

possible framework of service creation and operations and to

incorporate recent critical revolutions such as óCloudô and

SDN. The project motivation stems from the fact that it

considers NFV ISGôs scopes too large to progress it in time. In

this concept CloudNFV proposes an implementation, an

extension of ISG principles to ISG adjacent domains.

OpenNFV: It is a comprehensive project launched by HP, built

around a proposed open reference architecture encompassing a

service portfolio and enforced by an ecosystem of ISVs, NEPs

and application developers [33].

OenNFV architecture is aligned with the ETSI model. Its main

components are a NFV Infrastructure and a NFV Orchestrator

module, in turn based on HP Converged Infrastructure and HP

Converged Cloud propositions. It also capitalizes on the SDN

role, and on HPôs SDN technology assets. It is a modular

architecture, basically vendor agnostic and allowing a

modularized approach to NFV take -up.

Qosmos/Intel/Tieto: Intel has long been an active player in

supporting the development and evolution of NFV and SDN

through industry and vendor specific initiatives. The network

builders program for example is an industry initiative

Figure 18 . vCDN Content Delivery Performances

comprising of more than 70 companies. The goal of the

program is to make it easier to build, enhance and operate

SDN/NFV-based infrastructure while lowering capital and

operating expenditure. The program publishes function specific

architectures such as vEPC, vBRAS, and vCPE.

VII. ACKNOWLEDGEMENT

This work has been undertaken in the context of the European

project T-NOVA that is an Integrated Project co-funded by the

European Commission / 7th Framework Program, Grant

Agreement no. 619520.

VIII. CONCLUSION

In this paper, we have provided an overview on the T-NOVA

Platform with a special focus on the deployment and

performances of a wide variety of Virtual Network Functions

implemented during the project. Furthermore, real-world

considerations for handling VNF Lifecycles, Monitoring and

Networking have also been discussed. Lastly, we have

highlighted two examples of Service Chaining where several

VNFs are combined through the T-NOVA Marketplace to

create added-value services.

It is expected that the challenges and opportunities described in

this paper will help foster innovation around NFV and will help

pave the way for practitioners and researchers alike to further

extend the use of Network Function virtualization in the future.

REFERENCES

[1] Network Function Virtualization: An Introduction, Benefits,

Enablers, Challenges, and Call for Action. ETSI White

Paper, link: https://portal.etsi.org/nfv/nfv_white_paper.pdf
[2] The T-NOVA project, link: www.t-nova.eu

[3] Snort, link: https://www.snort.org/

[4] Pfsense firewall, link: https://www.pfsense.org//

[5] Iperf, link: https://iperf.fr/

[6] D-ITG, link: http://traffic.comics.unina.it/software/ITG/

[7] Ostinato, link: https://code.google.com/p/ostinato/

[8] Iptraf, link: http://iptraf.seul.org/

[9] VirtualBox, link: https://www.virtualbox.org/

[10] Y. Rebahi, et Al, Virtual Security Appliances: The Next
Generation Securityò, In the Proc of the IEEE ComManTel
2015, December 2015, Da Nang, Vietnam

[11] Nmap, link: www.nmap.org

[12] ESInet in What is NG911, link:
https://c.ymcdn.com/sites/www.nena.org/resource/resmgr/n
g9-1-1_project/whatisng911.pdf

[13] Openstack, link: www.openstack.org

[14] ETSI, GSNFV. "Network Functions Virtualisation (NFV);
Use Cases." V1 1 (2013): 2013-10.

[15] Pantelis A. Frangoudis, Louiza Yala, Adlen Ksentini, Tarik
Taleb. "An architecture for on-demand service deployment
over a telco CDN" In Communications (ICC), 2016 IEEE
International Conference on. IEEE, 2016.

[16] Gosselin, Stéphane, et al. "Converged fixed and mobile
broadband networks based on next generation point of
presence." Future Network and Mobile Summit
(FutureNetworkSummit), 2013. IEEE, 2013.

[17] Combo Project COMBO (COnvergence of fixed and Mobile
BrOadband access/aggregation networks) http://www.ict-
combo.eu

[18] Nicolas Herbaut, Daniel Negru, Damien Magoni, Pantelis A.
Frangoudis. " Deploying a Content Delivery Service
Function Chain on an SDN-NFV Operator Infrastructure"
Telecommunications and Multimedia (TEMU), 2016
International Conference on. IEEE, 2016.

[19] Sodagar, Iraj. "The mpeg-dash standard for multimedia
streaming over the internet." IEEE MultiMedia 4 (2011): 62-
67.

[20] P. Comi, P. Secondo Crosta, M. Beccari, P. Paglierani, G.
Grossi, F. Pedersini, A. Petrini "Hardware-accelerated High-
resolution Video Coding in Virtual Network Functions"
Networks and Communications (EuCNC), 2016 European
Conference on. IEEE, 2016.

[21] ETSI GS NFV-MAN 001: "Network Functions
Virtualisation (NFV); Management and Orchestration"

[22] T-NOVA D3.42: "Service Provisioning, Management and
Monitoring - Final" Web link: http://www.t-nova.eu/results/

[23] T-NOVA D3.3: ñService Mappingò Web link: http://www.t-
nova.eu/wp-
content/uploads/2016/02/Deliverable_3.3_Service_Mappin
g_v1.0.pdf

[24] T-NOVA D2.42: "Specification of the Network Function
framework and T-NOVA Marketplace - Final" Web link:
http://www.t-nova.eu/wp-
content/uploads/2016/03/TNOVA_D2.42_Specification_of
_the_Network_Function_Framework_and_T-
NOVA_Marketplace.pdf

[25] ETSI GS NFV-SWA 001: "Network Functions
Virtualisation (NFV); Virtual Network Functions
architecture"

[26] T-NOVA D2.22: "Overall System Architecture and
Interfaces - Final" Web link: http://www.t-nova.eu/wp-
content/uploads/2016/03/TNOVA_D2.22_Overall_System
_Architecture_and_Interfaces_v1.0.pdf

[27] T-NOVA D4.41: "Monitoring and Maintenance ï Interim"
Web link: http://www.t-nova.eu/wp-
content/uploads/2016/03/TNOVA_D4.41_Monitoring_and
_Maintenance_Interim.pdf

[28] IETF RFC 3261 ñSIP: Session Initiation Protocolò

[29] http://sipp.sourceforge.net

[30] T-NOVA Deliverable D2.22 ñOverall System Architecture
and Interfaces - Finalò, September 2015, Link: http://wiki.t-
nova.eu/tnovawiki/images/5/52/TNOVA_D2.22_Overall_S
ystem_Architecture_and_Interfaces_v1.0.pdf

[31] PoC#40: VNFaaS with end-to-end full service
orchestration link:
https://docbox.etsi.org/ISG/NFV/TST/05-
CONTRIBUTIONS/2016//NFVTST(16)000094r2_PoC_pr
oposal_VNFaaS_e2e_ServOrch.docx

[32] TM Forum ZOOM link: https://www.tmforum.org/zoom/

[33] HP OpenNFV link: http://www8.hp.com/us/en/cloud/nfv-
architecture.html

[34] Joel J. P. C. Rodrigues, Kai Lin, and Jaime Lloret, ñMobile

Networks and Cloud Computing Convergence for

Progressive Services and Applicationsò, IGI-Global

Publishers, Hershey, PA, USA, November 2013, 408 pp.s,

ISBN: 978-1-4666-4781-7 (hardcover), ISBN: 978-1-4666-

4782-4 (ebook), ISSN: 2327-3305, DOI: 10.4018/978-1-

4666-4781-7.

https://www.snort.org/
https://www.pfsense.org/
https://iperf.fr/
http://traffic.comics.unina.it/software/ITG/
https://code.google.com/p/ostinato/
http://iptraf.seul.org/
https://www.virtualbox.org/
http://www.ict-combo.eu/
http://www.ict-combo.eu/
http://sipp.sourceforge.net/
http://wiki.t-nova.eu/tnovawiki/images/5/52/TNOVA_D2.22_Overall_System_Architecture_and_Interfaces_v1.0.pdf
http://wiki.t-nova.eu/tnovawiki/images/5/52/TNOVA_D2.22_Overall_System_Architecture_and_Interfaces_v1.0.pdf
http://wiki.t-nova.eu/tnovawiki/images/5/52/TNOVA_D2.22_Overall_System_Architecture_and_Interfaces_v1.0.pdf
https://docbox.etsi.org/ISG/NFV/TST/05-CONTRIBUTIONS/2016/NFVTST(16)000094r2_PoC_proposal_VNFaaS_e2e_ServOrch.docx
https://docbox.etsi.org/ISG/NFV/TST/05-CONTRIBUTIONS/2016/NFVTST(16)000094r2_PoC_proposal_VNFaaS_e2e_ServOrch.docx
https://docbox.etsi.org/ISG/NFV/TST/05-CONTRIBUTIONS/2016/NFVTST(16)000094r2_PoC_proposal_VNFaaS_e2e_ServOrch.docx
https://www.tmforum.org/zoom/
http://www8.hp.com/us/en/cloud/nfv-architecture.html
http://www8.hp.com/us/en/cloud/nfv-architecture.html

