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Abstract ð This paper belongs to the series of research documents 

describing the progress in the specification and development of the 

T-NOVA framework offering a marketplace for virtual network 

functions. T-NOVA is an international research project co-funded 

by the European Commission. Although, the idea of having a 

marketplace enabling buying, composing, and deploying ñvirtualò 

services on the fly is promising, its implementation or prototyping 

remains far from realization. This is mainly due to the limitations 

in the existing cloud computing platforms on top of which the 

services should be built. In this paper, we discuss the T-NOVA 

approach and in particular some of the Virtual Network Functions 

(VNFs) that have been developed in this context.  Special attention 

is paid to the design and specification of the VNFs as well as the 

related technical challenges that were faced when deployed within 

the marketplace. Some experiments and test results are also 

provided.  
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I. INTRODUCTION  

The main goal of Network Function Virtualization (NFV) is 
to offer network functions onto industry standard high volume 
servers, switches and storage systems [1]. The use of NFV will 
enable telecom operators and service providers to go beyond the 
limitations dictated by hardware based appliances, and meet 
their objectives in terms of revenue increase and growth plan.  

In [1], a sample of Network Functions that can be virtualized 
was given. This includes, IPSec, VPN Gateway, DPI, AAA 
servers, and SBCs. In fact, any data plane packet processing and 
control plane function in mobile and fixed networks can be 
virtualized [1]. 

It is worth mentioning that in spite of the progress we have seen 
during the last years, especially in the context of standardizing 
NFVs, the related technology is still not mature enough to be 
deployed. What is also missing is a business model where 
various stakeholders collaborate in order to offer Virtual 
Network Functions (NFVs) and build added value services on 
top of that. In fact, this is the idea behind the T-NOVA project 
[2] where a marketplace for purchasing VNFs and deploying 
them on the fly has been developed. In the current paper, we will 
discuss the T-NOVA approach, in particular the progress in the 
specification and the development of the related framework.    

This paper is organized as follows: Section II overviews the 

T-NOVA architecture in which the marketplace and the VNFs 

are being specified and developed. Section III provides a short 

description of a sample of VNFs that have been developed as 

well as potential integration scenarios. In section IV, we 

discuss some experiments for validating the VNFs under 

consideration, and section V is the conclusion.   
 

II. THE T-NOVA ARCHITECTURE 

Taking into account the required functionalities of the T-NOVA 

project and building upon the ETSI NFV standard, we present 

a four-layered architecture. The figure below delineates the 

design. 

 

Figure 1. T-NOVA high-level architecture approach 

 

The T-NOVA architecture can be progressively structured into 

four design layers each of which is populated by an 

arrangement of useful parts. (i) The NFV Infrastructure (NFVi) 

layer incorporates the physical and virtual machines (i.e. item 

servers, virtual machines, stockpiling frameworks, or switches) 

where all are conveyed to a common infrastructure; (ii) the 

NFVi Management layer understands the diverse 

administration segments to be more specific, the Virtualized 

Infrastructure Management (VIM) and the Transport Network 

Management (TNM). Both segments might be alluded to as 

Infrastructure Virtualisation and Management (IVM); (iii) the 

Orchestration layer depends on the Orchestrator segment, and 

it additionally incorporates the NF Store; lastly (iv) the 

Marketplace layer contains all the client confronting modules, 

which encourage multi-inhabitant contribution and execute 

business-related functionalities. 

A. The Marketplace 

The benefits of NFV compared to dedicated infrastructure are 

multifarious: cost-efficient, time-to-business sector decrease, 

adaptable and so on. However, it also brings various difficulties 

that must be settled to empower its huge reception in the 

business sector.  

 

Specifically, the key point can be the advancement of 

development by opening a part of the systems administration 



and changing it to a novel virtual apparatus market, 

encouraging the association of programming participants, 

including SMEs and even academia. Besides the fast 

presentation of novel system capacities (counting redesigning 

of existing ones) at a much lower cost and reduced hazards, 

prompting huge abatement of Time-To-Market (TTM) for new 

arrangements remain key issues in the NFV Market. 

 

Keeping in mind the end goal to encourage the association of 

assorted performing artists in the NFV scene, a creative 

"Virtual Network Function Marketplace" that can take after the 

worldview of officially effective OS-particular "Application 

Stores" is required. The VNF Marketplace, which can be kept 

up by a Service supplier, can contain VNFs made and provided 

by a few outsider engineers, distributed as autonomous 

elements and accompanied with the fundamental metadata 

(counting exchanging data as a major aspect of the Virtual 

Network Function Descriptor). The Marketplace will permit 

clients to choose the virtual machines which best match their 

requirements, "plug" them into their current network benefits 

and arrange/adjust them as indicated by their necessities. 

 

So, as to encourage competition and backing diverse value 

chain setups, a Brokerage Platform can likewise be set up, 

permitting clients to execute with the Service Provider and 

different outsider Function Developers for selecting the best 

Service that suits their requirements. After getting what the 

Service Provider asks for, the Brokering module will look at i) 

the accessible Network and IT assets and ii) the accessible 

capacities at the Function Store and concoct particular 

financial/specialized offerings and related charging models. 

 

Via the Marketplace and the Brokerage platform, we promote a 

novel Marketplace for NFV, introducing new business cases 

and considerably expanding market opportunities by attracting 

new entrants into the networking market. 

 

New architectural elements that will allow the validation and 

verification of the admitted VNFs will be required in order to 

streamline and accelerate the adoption of new VNFs in the 

Marketplace.  

 

Contrasted with the ETSI reference architecture below and as 

indicated by Figure 1, the commercial center is totally novel 

concerning ETSI. This proposition presents the commercial 

center idea going for opening the NFV business sector to 

outsider designers for the procurement of VNFs, an idea that 

right now falls outside the specialized perspective of ETSI 

NFV. 

 

 
 

Figure 2. ETSI NFV architecture with the proposed 

marketplace 

 

B. VNFs between T-NOVA and ETSI 

As the Virtual Network Function Descriptor (VNFD) was 

introduced by ETSI, the T-NOVA project has used this 

descriptor that contains a variety of information (e.g. CPU, 

Memory, Virtual Deployment Units etc.) and extended it in 

order to take into account new requirements, such as (a) Node 

definition, (b) Link connectivity definition, and (c) the Service 

Level Agreement (SLA) based on the VNF performance. The 

above requirements were introduced in new fields inside the 

ETSI VNFD [21] descriptor and in a second stage uploaded to 

a component of the T-NOVA architecture that is able to 

understand and react to the new parameters. 

 

In order to consider the relationship between the Service 

Provider (SP) and the Function Provider (FP), a Network 

Service Descriptor (NSD) was defined, compliant to the ETSI 

NSD, and stretched out by the T-NOVA project keeping in 

mind the end goal to address the confirmation parameters for 

the purchaser of the Service. These affirmation parameters are 

characterized by the available kind of administration and are 

utilized as a part of requesting the orchestrator to store them 

inside and together with the VNF descriptor, put away in the 

Function store to enable the TeNOR orchestrator [22] for a 

choice on the Service Mapping Problem [23]. 

 

The list of services is then presented inside the T-NOVA 

Dashboard where the info provided inside the VNFD is used in 

order to create the said list. 

 

Identify applicable sponsor/s here. If no sponsors, delete this text box 

(sponsors). 



 

 

The descriptor provides information about the available 

Connection Points, the physical resources, etc. achieving in this 

way (see Figure 3) a Visual representation of the described 

VNFD.  

 

 
 

Figure 3. Representation of VNF with defined VNFD 

 

In the visual representation of the VNFD, we can see in orange 

the various connection points defined inside the VNFD. These 

connection points are attached to networks which later will be 

used for inter and intra communication of the various 

functionalities that a VNF can provide. In the figure above, we 

also have internal orange dots and external ones. The main 

difference is that the internal ones define inter-communication 

inside the various internal services of the VNF while the 

external dots are used as connection points among the external 

networks. Finally, we can see the CPU, Memory and storage 

that this VNF has attached. 

 

 

C. The VNF High level description 

In T-NOVA, a VNF is defined as a group of Virtual Network 

Function Components (VNFC), each of them consisting of a 

single Virtual Machine. Each VNF shall support the T-NOVA 

VNF lifecycle (i.e. start, stop, pause, scaling, etc.) under the 

control of the VNF Manager (VNFM) entity in the orchestrator 

layer. VNF developers who aim to develop new  

VNFs shall follow the common practices introduced in the T-

NOVA framework. With the exception of some mandatory 

blocks (described in the following), the internal 

implementations of a VNF is left to the VNF developer, 

nonetheless, the adoption of a common structure for VNF 

components as depicted in Figure 4 is recommended. 

 

 

 

 

 

 

 

Figure 4. VNF internal components 

 

The VNF Controller  is the internal component devoted to the 

support of the VNF lifecycle. The Init Configur ation 

component is responsible for the initialization of the VNF that 

happens at the beginning of the VNF execution. The 

Monitoring Agent  component transmits both system and 

application-level monitoring data towards the Monitoring 

System [24].  

 

All the VNF internal components are optional, except for the 

VNF Controller. The VNF Controller often acts as a VNF 

Master Function and is responsible for the internal organization 

of the VNFCs into a single VNF entity [25]. It must be present 

in each VNF because it is in charge of supporting the T-Ve-

Vnfm interface (defined in [26]) towards the VNFM. VNF 

developers are free to develop VNF internal components in any 

way they prefer as long as they comply with the VNF lifecycle 

management interface T-Ve-Vnfm. 

 

In the case of a composed VNF, the internal VNF components 

required by T-NOVA can be allocated in many different ways. 

The minimal mandatory requirement is that each VNF must 

have only one VNF controller. The other components, i.e. Init 

Configuration and Monitoring Agent, can be optionally 

allocated in the different VNFCs. Figure 5 provides an example 

of a VNF composed by two VNFCs. In this case, the Init 

Configuration component is allocated in all the VNFCs, while 

there is only one Monitoring Agent. Of course, other 

configurations are possible depending on the particularities of 

the VNF. 



 

Figure 5. The T-NOVA architecture ï VNF internal 

components in multi VNFCs VNF 

D. The VNFs life Cycle 

Each VNF shall have a management interface, named T-Ve-

Vnfm interface that is used to support the VNF lifecycle. The 

VNF lifecycle is implemented by events generated by the 

VNFM towards the VNF Controller in each VNF. 

The VNF lifecycle is shown in Figure 6.  

 

 

Figure 6. VNF lifecycle 

 

In the T-NOVA project, we have defined the following states:  

¶ Development: Software implementation of Network 

Functions (Nfs).  NFs are published and aggregated in 

the T-NOVA Function Store. 

¶ Validation : The validation procedure aims at 

providing a certification that the developed NFs will 

work as expected. 

¶ Publication: NF publication is performed at the NF 

Store, whose repository hosts both the function Virtual 

Deployment Unit (VDU) images and the associated 

description/metadata (VNFD) 

¶ Brokerage: undertaken by the brokerage module in 

the marketplace that matches usersô service 

requirements with the technical capabilities provided 

by the NFs, thus ensuring that the resources required 

for NFs deployment are available. 

¶ Selection: Finally, the customer selects the most 

suitable NFs according to their needs. 

¶ Deployment: The VNF VM image and its metadata 

are transferred from the NF Store to the virtualized 

infrastructure. 

¶ Management: This is the running phase of the NF. 

Through the T-Ve-Vnfm interface, the VNF Manager 

controls the VNF active states. They are: Setup of the 

VNF, Start and Stop of the service provided by the 

VNF, Scale of the VNF resources (scale-out and in). 

¶ Termination : Involves the removal of the NF instance 

from the virtualized infrastructure, including network 

re-configuration, if needed. 

 

An extended description of the VNF lifecycle can be found in 

[24]. 

 

In accordance to ETSI MANO [21], the interaction between 

VNFM and VNF, implementing the VNF lifecycle, is 

thoroughly described in the VNF Descriptor (VNFD) that 

contains a section called "lifecycle_event", providing all the 

details to allow the VNFM to interact with the VNF in a fully 

automated way.  

 

To this aim, each VNF needs to be able to declare various 

lifecycle events (e.g. start, stop, scale out...). For each of those, 

the information needed to configure the VNF can be very 

different. Moreover, the command to trigger the re-

configuration of the VNF can change between events. 

 

The information related to the VNF life-cycle is inserted in the 

ñlifecycle_eventò section of the VNFD. In particular, in such a 

section the following information is available: 

 

¶ Driver : the protocol used for the connection between 

the VNF Manager and the controlling VNFC. 

Currently T-NOVA supports two protocols: SSH and 

HTTP. 

¶ Authentication: such fields specify the type of 

authentication that must be used for the connection 

and some specific data required by the authentication 

process (e.g. a link to the private key injected by the 

VNFM at initialization time or HTTP credentials). 

¶ Template File Format: specifies the format of the file 

that contains the information about the specific 

lifecycle event, and that must be transferred once the 

command is run. 

¶ Template File: includes the name and the location of 

the Template File.  

¶ VNF Container: specifies the location of the 

Template File. 

¶ Command: defines the command to be executed 



E. VNFC Networking 

According to the T-NOVA architecture, each VNFC should 

have four separate network interfaces, each one bound to a 

separate isolated network segment. The networks related to any 

VNFC are: management, datapath, monitoring and storage. The 

figure (Figure 7) illustrates the above statement. In various 

cases, the above rule might not be followed, especially in the 

case where there is no real requirement for a particular 

network/interface e.g. a VNFC that is not using persistent 

storage on the storage array of the NFVI.  

 

 
 

Figure 7. VNF/VNFC Virtual Links and Connection Points 

The management network provides the connection and 

communication with the VNFM and passes lifecycle related 

events seamlessly to the VNF. The management network 

conveys the information passed over from VNFM to the VNF 

Controller (T-Vnfm-Vnf interface). The VNFM can control each 

particular VNFC, through the management interface, and 

provision the overall stable functionality of the VNF.  

 

The datapath network provides the networking for the VNF 

to accept and send data traffic related to the network function it 

supports. For example, a virtual Traffic Classifier would 

receive the traffic under classification from this interface. The 

datapath network can consist of more than one network 

interface that can receive and send data traffic. For example, in 

the case where the function of the VNFC is a L2 function (e.g. 

a bridge), the anticipated interfaces are two, one for the ingress 

and another one for the egress. In some cases, those interfaces 

might be mapped on different physical interfaces too.  The 

number of interfaces for the datapath and their particular use is 

decided by the VNF provider. Additionally, the data traffic that 

needs to be shared among different VNFCs uses the datapath 

network. 

 

The monitoring network  provides the communication with the 

monitoring framework. Each VNF has a monitoring agent 

installed on each VNFC, which collects VNF specific 

monitoring data and signals them to the Monitoring Framework 

(see [27]) or to the VNFM/EM depending on the situation. The 

flow of the monitoring data is from the VNF service to the 

monitoring agent to the framework, which collects data from all 

VNFs. A separate Monitoring network has been introduced in 

T-NOVA to cope with the amount of traffic generated in large-

scale deployments. Though, the monitoring traffic can be easily 

aggregated with the management traffic into a single network 

instance, if this solution results adequate to the specific 

application.  

 

The storage network is intended for supporting 

communication of the VNFCs with the storage infrastructure 

provided at each NFVI. This applies to the case where a VNFC 

will utilize persistent storage. In many NFVI deployment 

scenarios, the physical interface that handles the storage 

signaling (e.g. iSCSI) on each compute node is separated from 

the other network segments. This network segment is 

considered optional and only applicable to the above use cases.  

 

F. The VNF Forwarding Graph Descriptor 

 

The creation of an end-to-end network service needs to define 

inter-communication among the various Virtual Network 

functions as displayed in figure 3 where the external part of the 

VNFD is ready to be used for Inter-communication with other 

VNFs. This inter-communication among the VNFôs is defined 

by the VNF Forwarding graph (VNFG) providing a description 

of how and which connection point is linked among the various 

NSD of the VNFs. The forwarding graph must take into account 

various aspects like how we can reduce the configuration 

complexity in order to achieve a simpler and straightforward 

forward graph defined as efficient and resilient in order to 

achieve the best Agility. Taking all this into account, we have 

implemented a visual tool inside the T-NOVA Marketplace that 

provides all necessary means for specifying the attribute of each 

VNF to the desired VNFG (see VNFG configuration below). 



 
 

Figure 8.  VNFG configuration generation 

The output configuration is done by enabling connection links 

in a visual manner inside the T-NOVA Dashboard and creating 

an output of how the various VNFs are inter-connected. The 

output displayed above provides the ability to configure and 

generate the necessary inter-connection of the external 

networks of the various VNFs. Furthermore, the various 

networks are clearly defined in order to allow the Migration and 

coexistence of virtualized and non-virtualized NFs. In figure 10 

we see with the red line how a forwarding graph is created in 

order to utilize various Points of Presents and connecting the 

end user with the vProxy Appliance. 

 

III.  EXAMPLES OF DEVELOPED VNFS 

Several VNFs are being developed within the T-NOVA Project. 

On top of implementing and fine-tuning the software to achieve 

design goals, these functions have been integrated within the 

platform following the design decisions presented in previous 

sections. Even if they leverage the T-NOVA framework like 

specific marketplace integration and monitoring, the core 

functionalities can be ported easily to compliant NFV 

platforms. 

A. The Virtual Security Appliance 

A Security Appliance (SA) is simply a ñdeviceò designed to 

protect computer networks from unwanted traffic. This device 

can be active and block unwanted traffic. This is the case for 

instance of firewalls and content filters. A Security Appliance 

can also be passive. Here, its role is simply detection and 

reporting. Intrusion Detection Systems are a good example. A 

virtual Security Appliance (vSA) is a SA that runs in a virtual 

environment. In the context of T-NOVA, we have suggested a 

vSA composed of a firewall, an Intrusion Detection System 

(IDS) and a controller that links the activities of the firewall and 

the IDS. The vSA high level architecture was discussed in detail 

in [10]. The idea behind the vSA is to let the IDS analyze the 

traffic targeting the service and if some traffic looks suspicious, 

the controller takes a decision by, for instance, revising the rules 

in the firewall and blocking this traffic. The architecture of this 

appliance is depicted in figure 9 and includes the following 

main components. 

 

 

Figure 9.  vSA high level architecture 

 

The firewall: this component is in charge of filtering the traffic 

towards the service.  

The Intrusion Detection System: In order to improve attack 

detection, a combination of a packet filtering firewall and an 

intrusion detection system using both signatures and anomaly 

detection is considered. In fact, Anomaly detection IDS have 

the advantage over signature based IDS in detecting novel 

attacks for which signatures do not exist. Unfortunately, 

anomaly detection IDS suffer from high false-positive detection 

rates. It is expected that combining both arts of detection will 

improve detection and reduce the number of false alarms. In T-

NOVA, the open source signature based IDS ([3]) is used and 

will be extended to support anomaly detection as well. The 

mode of operation of the IDS component was also discussed in 

[10].  

The FW Controller: this application looks into the IDS "alerts 

repository" and based on the related information the rules of the 

firewall are revised. 

The Monitoring Agent: this is a script that reports to the 

monitoring server the status of the VNF through some metrics 

such as (Number of errors coming in/ going out of the 

WAN/LAN interface of pfsense, Number of bytes coming in/ 

going out of the wan/lan interface of pfsense, CPU usage of 

snort, Percent of the dropped packets, generated by snort, etc)  

The vSA controller: this is the application in charge of the vSA 

lifecycle (for more details, we refer to section II -D).  



 

B. The Virtual Proxy 

vPXaaS (virtual Proxy as a Service) provides proxy services on 

demand to both Internet Service providersô (ISP) subscribers: 

 

Å  Home users e.g. DSL subscribers. 

Å  Corporate users e.g. company subscribers. 

 

The idea behind using the proxy as a VNF is to move it from 

the LAN to the cloud to be used ñas a serviceò. Nevertheless, a 

subscriber (LAN administrator) will be able to configure the 

proxy from a web-based user friendly dashboard. 

 

 

 

 
 

Figure 10.  vProxy high level architecture 

 

The PXaaS vNF was developed in the context of T-NOVA and 

offers the following features, 

 

Å Web Access control 

Å  Bandwidth control (Web traffic) 

Å  Web site filtering 

Å  Web caching 

Å  User anonymity 

 

 

C. The Virtual Session Border Controller 

A Session Border Controller (SBC) provides network 

interconnection and security services between two IP networks. 

It operates at the edge of these networks and is used whenever 

a multimedia session involves two different IP domains. It 

performs:  

 

¶ the session control on the ñcontrolò plane, adopting 

SIP as a signaling protocol [28]; 

¶ several functions on the ñmediaò plane (i.e : 

transcoding, trans-rating, NAT, etc), adopting Real 

time Transport Protocol (RTP) for multimedia content 

delivery. 

 

The vSBC is the VNF implementing the SBC service in the TȤ
NOVA virtualized environment. It is a prototype version of the 

commercial SBC that Italtel is developing for the NFV market. 

General requirements for vSBCs comprise both essential 

features (such as: IP to IP network interconnection, SIP 

signaling proxy, Media flow NAT, RTP media support) and 

also advanced requirements (such as: SIP signaling 

manipulation, realȤtime audio and/or video transcoding, 

Topology hiding, Security gateway, IPv4-IPv6 gateway, 

generation of metrics, etc.). For the objectives of the T-NOVA 

project, we focus on all essential features and a subset of 

advanced requirements (i.e. IPv4-IPv6 gateway; realȤtime 

audio and/or video transcoding for mobile and fixed network; 

metrics generation; etc). 

 

 

 

 

Figure 11. Enhanced vSBC internal architecture (with DPS 

component). 

 

¶ SIP Load Balancer (LB): balances the incoming SIP 

messages, forwarding them to the appropriate IBCF 

instance.  

¶ Interconnection Border Control Function (IBCF): 
implements the control function of the SBC. It 

analyzes the incoming SIP messages, and handles the 

communication between disparate SIP endpoint 

applications. The IBCF extracts from incoming SIP 

messages the information about media streams 

associated to the SIP dialog, and instructs media plane 

components (DPS and/or BGF) to process them.  

¶ Border Gateway Function (BGF): processes media 

streams, applying transcoding and transrating 

algorithms when needed (transcoding transforms the 

algorithm used for coding the media stream, while 



transrating changes the sending rate of IP packets 

carrying media content). This feature is used whenever 

the endpoints of the media connection support 

different codecs, and it is an ancillary function for an 

SBC because, in common network deployments, only 

a limited subset of media streams processed by the 

SBC need to be transcoded. The BGF is controlled by 

the IBCF using the internal BG ctrl interface. If the 

transcoding /transrating function is implemented by a 

pure software transcoder its performances 

dramatically decrease, unless GPU (Graphical 

Processing Units) hardware acceleration is available in 

the virtual environment. Otherwise this issue could be 

mitigated by running more BGF instances. The BGF 

component can also provide metrics to the T-NOVA 

monitoring agent; 

¶ Operating and Maintenance (O&M): it supervises 

the operating and maintenance functions of the VNF. 

In a cloud environment, the O&M module extends the 

traditional management operations handled by the 

Orchestrator (i.e. scaling). The O&M component 

interacts (via HTTP) with the VNF manager, using the 

T-Ve-Vnfm interface, for applying the T-NOVA 

lifecycle; 

¶ Data Plane Switch (DPS): it is the (optional) front-

end component of the vSBC based on DPDK 

acceleration technology available in Intel x86 

architectures to reach a performance level comparable 

to the hardware-based version adopting HW 

acceleration technologies. This component can use the 

same IP address, as ingress or egress point, both for 

signaling and media flows. Its goal is to provide high 

speed in processing the addressing information in the 

header of the IP packet, leaving the payload 

untouched. The DPS is instructed how to manage the 

IP packets by the IBCF component, acting as an 

external controller using an internal dedicated DPS 

ctrl interface (see Figure 11ϋ. The DPS component 

can:  

Ǔ either provide the packet forwarding to the BGF 

(in case of transcoding)  

Ǔ or apply a local Network Address Translation 

(NAT)/port translation  

 

D. The virtual Content Delivery Network. 

Content Delivery networks (CDN) have been created to cope 

with the challenges encountered by Content Providers (CP) to 

deliver huge amounts of static data through best effort Internet. 

ISPs are interested in building these solutions as they represent 

an interesting growth driver. 

 

Described by ETSI as a virtualization use case [14], vCDN fits 

well in the T-NOVA project due to the specific challenges of 

its implementation in an operator network, technical 

breakthroughs made possible by the NFV approach and 

business model innovation for ISPs. 

 

Using their substrate to deploy vCDN architecture [15] allows 

the ISPs to benefit even more from the creation of Next 

Generation Point of Presence ([16], [17]), designed to host VNF 

at the edge of their network and to leverage their end-to-end 

network management. Furthermore, the increased flexibility 

offered by placing caches in POPs coupled with sophisticated 

service mapping models, enable them to provide solutions for 

Content Providers Quality of Experience requirements. 

Besides, using NFV enables the deployment of better 

alternatives to handle Service-User assignment tasks, like the 

Virtual Media Gateway we have introduced in this work. 

Finally, Network Function scaling is used to adapt to 

fluctuating content delivery demand and content ingestion 

requirements. 

Our proposal is developed around 4 main modules: 

 

¶ The Virtual Media Gateway (VMG) : is a transit 

Network Function inspecting high-level HTTP traffic 

that can influence the IP routing decisions, based on 

the presence of the content in a nearby POP. Its 

configuration is provided by the caching orchestrator 

which has a complete vision of the system. 

 

 

 
 

 

¶ The Content Streamers: are built around a 

distributed object storage engine that provides 

resiliency, horizontal scalability and geographical 

redundancy amongst POPs. 

¶ Content Ingestors: are scalable workers that perform 

software transcoding to H264 and H265 video 

compression standards as well as re-segmentation of 

videos using both DASH [19] and HLS technology to 

provide adaptive HTTP Streaming capability.  

Ingestors receive content from the CP Servers (push 

model) or can be automatically provisioned from the 

most popular contents (pull model). Ingestors have 

been shown to be able to rely on hardware accelerators 

(Virtual Transcoding Units, also part of the T-NOVA 

Project [20]) for computer intensive tasks when 

available. 

¶ Caching Orchestrator: is the module in charge of 

controlling the ingestion (by scheduling the job of the 

workers), the provisioning (by selecting which content 

Figure 12. VCDN High Level Architecture 



is cached in which streamer) and the delivery (by 

deploying configuration on the VMG) of content 

¶ Technical considerations (a case for using 

containers for the T-NOVA architecture) : The only 

implementation available for what ETSI calls  

Virtualization Deployment Unit (VDU) are Virtual 

Machine Images. It means that whenever any software 

component requires an update (bug fix, or a new 

feature), a new VM Image needs to be generated, 

tested and deployed in the system. Even if this cycle is 

fully automated and carried out without human 

intervention, from a software engineering standpoint, 

streamlining this process is time consuming. It can 

take several hours to test a simple modification due to 

VM image processing, VM image transfer to the 

remote testbed and finally VNF embedding. To 

circumvent this issue, we packaged all our software 

using Docker containers technology. Without any 

drawback in terms of performance, we saved hours of 

tedious manipulation by injecting frequently updated 

Docker images into the same vanilla VM Image at 

VNF embedding time (saving the time or VM Image 

generation and transfer). Containers technology 

allowed us to increase software agility without 

sacrificing runtime performances. 

 

IV.  INTEGRATION OF VNFS AND SERVICE CHAINING  

In this section, we describe a couple of scenarios showing how 

different VNFs can be integrated with each other. To achieve 

this, some real life scenarios were imitated. 

A. The vSA-vProxy scenario 

One way to integrate the vSA and the vProxy is to put them 

together to reflect a proxy scan attack detection. The latter 

means the attacker tries to find potential proxies to use them 

utilizing a port scan attack. Port scanning is a general technique 

used to survey one or more network connected hosts for 

availability. Port scanning is often called network scanning. We 

may scan a host for more specific services. Typically, we may 

check that one server responds on TCP port 80 (HTTP) to 

ensure that our Web service is up and running. The vSA-vProxy 

works as follows, 

 

Á The IDS (Snort) in the vSA is configured to detect port 

scan attacks) 

Á Nmap [11] sends packets (supposed to be the attacker) 

Á The packets are intercepted by the Firewall 

Á The packets are also analyzed by the IDS 

Á Port scan attack detected, IDS instructs the Firewall to 

block traffic coming from the IP address of Nmap 

 

B. The vSA-vSBC scenario 

The integration of the vSA and the vSBC also makes sense if 

we look at it as a VoIP service enhanced with security at layers 

three and four.   The combination of vSA and vSBC allows 

implementing a multi-layer approach to the security of the 

signaling layer. The role of the vSA is to secure the IP, TCP and 

UDP protocols, while the vSBC provides security at SIP level. 

This integration could also be seen as a Border Control 

Function (BCF) of the IP based Emergency Services Network 

(ESInet) where the BCF has to be a combination of a firewall 

and a SBC in order to protect the ESInet [12] and the Public 

Answering Points (PSAPs) from malicious traffic.   

 

 

V. EXPERIMENTATION 

In this section, we discuss some of the experiments we 

performed in order to validate our work. Although different 

aspects have been tested, our focus in this paper is more on the 

performance issue. In fact, in the past, the performance of the 

appliances was achieved through dedicated hardware. In 

virtualized environments, this is not possible because different 

applications might run on the same operating system and 

compete for the same hardware computing resources.   

 

A. vSA testing 

To study the performance of the security appliances (in 

particular the firewalls), appropriate metrics are needed. 

Although the activities in this area are very scarce, we described 

in [10] potential metrics that could be used. This includes 

throughput, latency, jitter, and goodput. For more detail please 

refer to [10]. 

 

For simplicity reasons, we have used Iperf [5] for generating IP 

traffic in our tests. In fact, other IP traffic generators such as D-

ITG [6], ostinato [7], and IPTraf [8] could have also been 

utilized. Iperf mainly generates TCP and UDP traffic at 

different rates. Diverse loads (light, medium, heavy) and 

different packet sizes are also considered. For analyzing IP     

traffic, we used ñtcpdumpò for capturing it and ñtcptraceò to 

analyze it and generate statistics. The main difference with 

respect to the tests performed in [10] is the fact that in this 

paper, the tests are performed on a cloud computing platform 

(not simply in VirtualBox [9]) namely, Openstack [13]. This 

also enables the testing of some networking functionalities of 

OpenStack as the latter does not offer much freedom and 

flexibility on arbitrary traffic steering. Similarly to [10], the 

undertaken tests are based on three main scenarios, 

  

Á Scenario one (No firewall): Here, we configure and check 

the connectivity between the Iperf client and the virtual 

proxy without a firewall in between. This enables us to test 

the capacity of the communication channel  

Á Scenario two (TCP traffic with firewall and no rules): 

Here, we check whether the introduction of the vSA (in 

particular, the firewall in between) generates extra delay. 

We also test the capacity of the vSA in this context  

Á Scenario three (with firewall and increasing number of 

rules): the objective of this scenario is to study the effect of 

introducing rules into the firewall of the vSA. To achieve 

this scenario, a script for the firewall is implemented in 



order to generate rules in an automatic way. The script is a 

shell script using specific API commands and generates 

blocking rules for random source IP addresses (excluding 

those used in the test setup) and the WAN interface. Here, 

the easyrule function of pfsense is extended. In this 

scenario, some tests are also performed using UDP instead 

of TCP 

 

 
 

Figure 13. vSA throughput  

 

 

When no firewall is used between the Iperf client and the virtual 

proxy, one can note that the throughput of the communication 

remains good (between 700 and 800 Mbit/s) as long as the 

number of 60 parallel connections is not exceeded. When the 

vSA (in particular the firewall) is in between, the throughput 

varies between 700 and 750 Mbit/s as long as the number of 

parallel connections does not exceed 20 connections. When the 

number of connections goes beyond the value 60, the 

throughput for the vSA without firewall rules decreases slowly 

to reach 580 Mbit/s when 100 connections are opened (Figure 

13). This situation becomes worse when rules are configured on 

the firewall. Indeed, the throughput decreases to 480 Mbit/s 

when 3000 rules are configured and 100 connections are 

opened (Figure 13).   

 

 

B. vSBC testing  

The vSBC was tested in a laboratory for studying the load curve 

characterization under traffic conditions. As introduced in the 

previous sections, the SBC is logically composed by signaling 

and media planes. The signaling plane processes SIP messages 

while the media plane works on RTP packets, under the control 

of the signaling plane. This intrinsic architecture suggests a 

deployment scenario composed by separate virtual machines 

for the two planes.  

 

The configuration under test was composed by two VMs, 

namely VDU1 performing the SIP load balancer and the IBCF 

control function, and VDU2 dedicated to the media plane 

peforming the BGF.  

 

VDU1 was configured with 8 virtual CPUs and 16 Gb of 

memory.  

 

VDU2 was configured with 8 virtual CPUs and 4 Gb of 

memory.  

 

The testbed configuration was as follows: 

 

¶ Server HP ProLiant DL380 G5, single server equipped 

with 2 Processors Quad-Core Intel® Xeon® Processor 

E5335 (2.00 GHz), Memory 32 GB. 

¶ CentOS (version 7.2) 

¶ Openstack (Liberty) 

 

The traffic conditions were simulated by different traffic 

generators emulating SIP and Media flows towards the vSBC. 

The open-source SIPP [29] protocol generator was used to test 

the control plane. More sophisticated tests were performed by 

using commercial traffic generators such as Catapult and 

NeTracker. The latter was able to test both the signaling and 

media planes. 

 

The goal of the test was to measure key performance indicators 

under different traffic conditions. These indicators were CPU 

load, memory usage, and network throughput. 

 

The following diagrams report the test results in case of 0, 10, 

60, 120, 240, 500 parallel sessions for a NAT service for G.711 

codec with 20ms of packetization time. The sessions refer to 

calls of 120 seconds in duration. 

 

The CPU load of the signaling layer smoothly increases with 

the number of sessions, while the media layer is heavily 

impacted (see Figure 14). 

 

 

Figure 14. vSBC CPU load 



 

 
 

Figure 15. vSBC signaling layer throughput 

 

 

The throughput of the signaling layer is represented in Figure 

15. The throughput of the media layer, represented in Figure 16, 

has a similar behavior. Of course there is a difference of several 

order of magnitude due to the large amount of media packets 

with respect to the associates signaling messages. 

 

 

 

 
 

Figure 16. vSBC media layer throughput 

From the laboratory tests we learned that when the traffic 

increases to around 900 parallel sessions, the system starts 

suffering and dropping packets. This is a limit situation for the 

described configuration that could be managed either by 

limiting the traffic or implementing a scale-out procedure. 

Currently scaling is under final development and meaningful 

figures are not available yet. 

 

 

C. vCDN testing 

 

For testing purposes, the vCDN can be seen as a chain of micro-

services working together to implement the function. Having 

several components interacting together augments the 

complexity of the task of characterizing the bottlenecks of the 

solution. We also need to take into account the fact that absolute 

performance is not really meaningful for scalable applications 

since adding additional resources increase the processing 

capacity and the state of the cloud environment hosting the 

solution can vary over time, along with the performances. 

We carried out our experiments in a fully-fledged NFV 

Infrastructure deployed within the T-NOVA project for a 

baseline configuration of 5 Virtual Machines (with 4 vcore and 

4GB of RAM each). We only present high level performance 

results corresponding to the 2 end-to-end scenarios: Ingestion-

Provisioning and Delivery. 

1) Testing vCDN Ingestion-Provisionning 

For the vCDN, ingestion means deploying the original content 

in the object store, analyzing this content, deciding which the 

optimal format for the content is and producing the adapted 

content. It is a very CPU and memory intensive task that can be 

easily scaled with the adjunction of a ñworkerò VM. Figure 17 

shows a setting where we let the system ingest 200 videos of 20 

MB at an average arrival rate of 30 videos per minute. We 

compare the number of ñpendingò video jobs that are queued 

by the system for several settings. We scaled our VNF out and 

allowed the number of ingestion VM to vary. 

 

We can see that the configuration with only 1 VM doesnôt cope 

with the load as it accumulates more than 120 pending videos 

and it depletes its video stock in more than 900 s. On the 

contrary the 3 VM setting manages to finish nearly on time 

(420s).  

 

Thanks to this design the number of ingestion-provisioning VM 

can be adjusted based on the characteristics of the videos and 

on the tolerance to delay of the customer. 

 

 
 

 

2) Testing the vCDN Delivery  

 

The overall performance of the delivery part of the vCDN 

depends to a large extent on the network performances between 

Figure 17. VCDN Ingestion-Provisionning Performances 



the object storage nodes. Indeed each content is chunked and 

spread on several nodes to provide redundancy and increase 

performance. Furthermore, the Virtual Media Gateway is used 

to inspect HTTP Packets, which may also cause delay and 

reduced throughput. 

 

In Figure 18 we used apacheôs ab tool to compute the 95 

percentile maximum time taken to download a 10s, 6 MB video 

file encoded as 600 KBps. We increased the number of 

concurrent connections to establish the threshold above which 

the video cannot be streamed at its nominal bitrate for the 5VM 

baseline configuration. 

 

We can see two important results from the graph. First of all, 

thereôs no significant difference between the performance of 

storage with or without the VMG. It means that the storage is 

the bottleneck in this case and the VMG does not need to be 

scaled-up to increase performance. Next, the video can be 

streamed by 250 simultaneous users. This value is strongly 

correlated to the underlying state of the network on our 

infrastructure and also on the storage technology used in the 

platform. For example, our object storage engine is designed to 

use SSD disks to boost the delivery of the most used files. This 

feature was not available on our infrastructure and could have 

dramatically increased performances, especially for internet 

content where only a small number of items are popular while 

the rest remain unknown. 

 

 

 
 

 

 

 

VI.  NFV ARCHITECTURES SURVEY 

This section provides a short summary of a number of NFV 

platforms and architectures as proposed by industry 

frameworks and solutions as well as efforts from 

Standardization Bodies related to NFV. For a more detailed 

description, we refer to the T-NOVA deliverable D2.22 [30]. 

  

ETSI ISG NFV: A network operator led Industry Specification 

Group (ISG) with open membership was setup in the last 

quarter of 2012 under the umbrella of ETSI to work through the 

technical challenges of Network Functions Virtualization. It is 

worth noting that ETSI ISG NFV does not provide standards 

but rather produces guideline documents in the form of Group 

Specifications. The outputs are openly published and shared 

with relevant standards bodies, industry Fora and Consortia to 

encourage a wider collaborative effort. A PoC of T-NOVA end-

to-end orchestration has been recently accepted by ETSI [31]. 

It will verify that E2E Service Orchestration enables the VNF 

to run on top of the NFVI and is able to optimize the location 

and required resources of the VNFs. 

 

TM Forum (TMF) : TMF is a global trade association of 

service providers and suppliers with the overall objective of 

progressing and succeeding in the digital economy. In short, 

TM forum works in 4 key areas: Business & IT transformation, 

Business metrics and KPIs, Cybersecurity and Managing 

Virtualized Networks and Services. It is in the context of this 

last mentioned area where TMF has recently kicked off a major 

new project with the aim of creating a blueprint for a new 

generation of service provider support systems to achieve 

business agility when delivering virtual network and services; 

it is the zero-touch orchestration, operations and management 

(ZOOM) project [32]. 

 

CloudNFV: It is an open platform for implementing NFV based 

on cloud computing and SDN technologies in a multi-vendor 

environment. The companies currently involved are: 6WIND, 

CIMI Corporation, Dell, Enterprise Web, Overture Networks, 

and Qosmos. It has been recently accepted as a proof of concept 

(PoC) in the frame of ETSI NFV ISG. CloudNFV builds on the 

NFV ISG work in order to validate it within the broadest 

possible framework of service creation and operations and to 

incorporate recent critical revolutions such as óCloudô and 

SDN. The project motivation stems from the fact that it 

considers NFV ISGôs scopes too large to progress it in time. In 

this concept CloudNFV proposes an implementation, an 

extension of ISG principles to ISG adjacent domains. 

 

OpenNFV: It is a comprehensive project launched by HP, built 

around a proposed open reference architecture encompassing a 

service portfolio and enforced by an ecosystem of ISVs, NEPs 

and application developers [33].  

OenNFV architecture is aligned with the ETSI model. Its main 

components are a NFV Infrastructure and a NFV Orchestrator 

module, in turn based on HP Converged Infrastructure and HP 

Converged Cloud propositions. It also capitalizes on the SDN 

role, and on HPôs SDN technology assets. It is a modular 

architecture, basically vendor agnostic and allowing a 

modularized approach to NFV take -up.   

 

Qosmos/Intel/Tieto: Intel has long been an active player in 

supporting the development and evolution of NFV and SDN 

through industry and vendor specific initiatives. The network 

builders program for example is an industry initiative 

Figure 18 . vCDN Content Delivery Performances 



comprising of more than 70 companies. The goal of the 

program is to make it easier to build, enhance and operate 

SDN/NFV-based infrastructure while lowering capital and 

operating expenditure. The program publishes function specific 

architectures such as vEPC, vBRAS, and vCPE.  
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VIII.  CONCLUSION 

In this paper, we have provided an overview on the T-NOVA 

Platform with a special focus on the deployment and 

performances of a wide variety of Virtual Network Functions 

implemented during the project. Furthermore, real-world 

considerations for handling VNF Lifecycles, Monitoring and 

Networking have also been discussed. Lastly, we have 

highlighted two examples of Service Chaining where several 

VNFs are combined through the T-NOVA Marketplace to 

create added-value services. 

 

It is expected that the challenges and opportunities described in 

this paper will help foster innovation around NFV and will help 

pave the way for practitioners and researchers alike to further 

extend the use of Network Function virtualization in the future. 

REFERENCES 

 

[1] Network Function Virtualization: An Introduction, Benefits, 

Enablers, Challenges, and Call for Action. ETSI White 

Paper, link: https://portal.etsi.org/nfv/nfv_white_paper.pdf 
[2] The T-NOVA project, link: www.t-nova.eu 

[3] Snort, link: https://www.snort.org/  

[4] Pfsense firewall,  link: https://www.pfsense.org// 

[5] Iperf, link: https://iperf.fr/  

[6] D-ITG, link: http://traffic.comics.unina.it/software/ITG/ 

[7] Ostinato, link: https://code.google.com/p/ostinato/ 

[8] Iptraf, link: http://iptraf.seul.org/ 

[9] VirtualBox, link: https://www.virtualbox.org/ 

[10] Y. Rebahi, et Al, Virtual Security Appliances: The Next 
Generation Securityò, In the Proc  of the IEEE ComManTel 
2015, December 2015, Da Nang, Vietnam 

[11] Nmap, link: www.nmap.org 

[12] ESInet in What is NG911, link: 
https://c.ymcdn.com/sites/www.nena.org/resource/resmgr/n
g9-1-1_project/whatisng911.pdf 

[13]  Openstack, link: www.openstack.org 

[14] ETSI, GSNFV. "Network Functions Virtualisation (NFV); 
Use Cases." V1 1 (2013): 2013-10. 

[15] Pantelis A. Frangoudis, Louiza Yala,  Adlen Ksentini, Tarik 
Taleb. "An architecture for on-demand service deployment 
over a telco CDN" In Communications (ICC), 2016 IEEE 
International Conference on. IEEE, 2016. 

[16] Gosselin, Stéphane, et al. "Converged fixed and mobile 
broadband networks based on next generation point of 
presence." Future Network and Mobile Summit 
(FutureNetworkSummit), 2013. IEEE, 2013. 

[17] Combo Project COMBO (COnvergence of fixed and Mobile 
BrOadband access/aggregation networks)  http://www.ict-
combo.eu 

[18] Nicolas Herbaut, Daniel Negru, Damien Magoni, Pantelis A. 
Frangoudis. " Deploying a Content Delivery Service 
Function Chain on an SDN-NFV Operator Infrastructure" 
Telecommunications and Multimedia (TEMU), 2016 
International Conference on. IEEE, 2016. 

[19] Sodagar, Iraj. "The mpeg-dash standard for multimedia 
streaming over the internet." IEEE MultiMedia 4 (2011): 62-
67. 

[20] P. Comi, P. Secondo Crosta, M. Beccari, P. Paglierani, G. 
Grossi, F. Pedersini, A. Petrini "Hardware-accelerated High-
resolution Video Coding in Virtual Network Functions"  
Networks and Communications (EuCNC), 2016 European 
Conference on. IEEE, 2016. 

[21] ETSI GS NFV-MAN 001: "Network Functions 
Virtualisation (NFV); Management and Orchestration" 

[22] T-NOVA D3.42: "Service Provisioning, Management and 
Monitoring - Final" Web link: http://www.t-nova.eu/results/ 

[23] T-NOVA D3.3: ñService Mappingò Web link: http://www.t-
nova.eu/wp-
content/uploads/2016/02/Deliverable_3.3_Service_Mappin
g_v1.0.pdf 

[24] T-NOVA D2.42: "Specification of the Network Function 
framework and T-NOVA Marketplace - Final" Web link: 
http://www.t-nova.eu/wp-
content/uploads/2016/03/TNOVA_D2.42_Specification_of
_the_Network_Function_Framework_and_T-
NOVA_Marketplace.pdf 

[25] ETSI GS NFV-SWA 001: "Network Functions 
Virtualisation (NFV); Virtual Network Functions 
architecture" 

[26] T-NOVA D2.22: "Overall System Architecture and 
Interfaces - Final" Web link: http://www.t-nova.eu/wp-
content/uploads/2016/03/TNOVA_D2.22_Overall_System
_Architecture_and_Interfaces_v1.0.pdf 

[27] T-NOVA D4.41: "Monitoring and Maintenance ï Interim" 
Web link: http://www.t-nova.eu/wp-
content/uploads/2016/03/TNOVA_D4.41_Monitoring_and
_Maintenance_Interim.pdf 

[28] IETF RFC 3261 ñSIP: Session Initiation Protocolò 

[29] http://sipp.sourceforge.net 

[30] T-NOVA Deliverable D2.22 ñOverall System Architecture 
and Interfaces - Finalò, September 2015, Link: http://wiki.t-
nova.eu/tnovawiki/images/5/52/TNOVA_D2.22_Overall_S
ystem_Architecture_and_Interfaces_v1.0.pdf 

[31] PoC#40: VNFaaS with end-to-end full service 
orchestration link: 
https://docbox.etsi.org/ISG/NFV/TST/05-
CONTRIBUTIONS/2016//NFVTST(16)000094r2_PoC_pr
oposal_VNFaaS_e2e_ServOrch.docx 

[32] TM Forum ZOOM link: https://www.tmforum.org/zoom/ 

[33] HP OpenNFV link: http://www8.hp.com/us/en/cloud/nfv-
architecture.html 

[34] Joel J. P. C. Rodrigues, Kai Lin, and Jaime Lloret, ñMobile 

Networks and Cloud Computing Convergence for 

Progressive Services and Applicationsò, IGI-Global 

Publishers, Hershey, PA, USA, November 2013, 408 pp.s, 

ISBN: 978-1-4666-4781-7 (hardcover), ISBN: 978-1-4666-

4782-4 (ebook), ISSN: 2327-3305, DOI: 10.4018/978-1-

4666-4781-7.  

https://www.snort.org/
https://www.pfsense.org/
https://iperf.fr/
http://traffic.comics.unina.it/software/ITG/
https://code.google.com/p/ostinato/
http://iptraf.seul.org/
https://www.virtualbox.org/
http://www.ict-combo.eu/
http://www.ict-combo.eu/
http://sipp.sourceforge.net/
http://wiki.t-nova.eu/tnovawiki/images/5/52/TNOVA_D2.22_Overall_System_Architecture_and_Interfaces_v1.0.pdf
http://wiki.t-nova.eu/tnovawiki/images/5/52/TNOVA_D2.22_Overall_System_Architecture_and_Interfaces_v1.0.pdf
http://wiki.t-nova.eu/tnovawiki/images/5/52/TNOVA_D2.22_Overall_System_Architecture_and_Interfaces_v1.0.pdf
https://docbox.etsi.org/ISG/NFV/TST/05-CONTRIBUTIONS/2016/NFVTST(16)000094r2_PoC_proposal_VNFaaS_e2e_ServOrch.docx
https://docbox.etsi.org/ISG/NFV/TST/05-CONTRIBUTIONS/2016/NFVTST(16)000094r2_PoC_proposal_VNFaaS_e2e_ServOrch.docx
https://docbox.etsi.org/ISG/NFV/TST/05-CONTRIBUTIONS/2016/NFVTST(16)000094r2_PoC_proposal_VNFaaS_e2e_ServOrch.docx
https://www.tmforum.org/zoom/
http://www8.hp.com/us/en/cloud/nfv-architecture.html
http://www8.hp.com/us/en/cloud/nfv-architecture.html



